Emily R Nigro, Katie S Collins, Stewart M Edie, Nicholas M A Crouch, David Jablonski
{"title":"Key Adaptive Trait Promotes Contrasting Modes of Diversification in a Bivalve Clade.","authors":"Emily R Nigro, Katie S Collins, Stewart M Edie, Nicholas M A Crouch, David Jablonski","doi":"10.1007/s11692-024-09643-6","DOIUrl":null,"url":null,"abstract":"<p><p>Siphons in bivalves have been postulated as a key adaptive trait, enabling modes of life inaccessible to asiphonate lineages, that afford better protection from predation and dislodgement, thereby enhancing their taxonomic diversification. To test the impact of siphons on diversity, we compared two bivalve clades with similar shell forms and life positions that differ in the presence/absence of this supposed key trait: the asiphonate Archiheterodonta (origin ~ 420 Myr ago) and the siphonate Veneridae (origin ~ 170 Myr ago). We measured three characters relevant to burrowing (shell length, cross-sectional area, and proportional shell volume) in these two groups, finding that siphonate venerids occupy more modes of life than archiheterodonts because they can live at a greater range of distances from the sediment-water interface, with the thinnest shells occurring in the deepest-burrowing groups. Asiphonate taxa have thicker shells, perhaps as a compensatory adaptation in response to the potential for exposure and attack because they are limited to shallower depths of burial. The lack of siphons may have impeded morphologic and taxonomic diversification in archiheterodonts. In contrast, siphons are consistent with a key adaptive trait in the Veneridae, evidently enabling taxonomic diversification into a greater range of morphologies.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11692-024-09643-6.</p>","PeriodicalId":50471,"journal":{"name":"Evolutionary Biology","volume":"52 1","pages":"26-39"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830643/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11692-024-09643-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Siphons in bivalves have been postulated as a key adaptive trait, enabling modes of life inaccessible to asiphonate lineages, that afford better protection from predation and dislodgement, thereby enhancing their taxonomic diversification. To test the impact of siphons on diversity, we compared two bivalve clades with similar shell forms and life positions that differ in the presence/absence of this supposed key trait: the asiphonate Archiheterodonta (origin ~ 420 Myr ago) and the siphonate Veneridae (origin ~ 170 Myr ago). We measured three characters relevant to burrowing (shell length, cross-sectional area, and proportional shell volume) in these two groups, finding that siphonate venerids occupy more modes of life than archiheterodonts because they can live at a greater range of distances from the sediment-water interface, with the thinnest shells occurring in the deepest-burrowing groups. Asiphonate taxa have thicker shells, perhaps as a compensatory adaptation in response to the potential for exposure and attack because they are limited to shallower depths of burial. The lack of siphons may have impeded morphologic and taxonomic diversification in archiheterodonts. In contrast, siphons are consistent with a key adaptive trait in the Veneridae, evidently enabling taxonomic diversification into a greater range of morphologies.
Supplementary information: The online version contains supplementary material available at 10.1007/s11692-024-09643-6.
期刊介绍:
The aim, scope, and format of Evolutionary Biology will be based on the following principles:
Evolutionary Biology will publish original articles and reviews that address issues and subjects of core concern in evolutionary biology. All papers must make original contributions to our understanding of the evolutionary process.
The journal will remain true to the original intent of the original series to provide a place for broad syntheses in evolutionary biology. Articles will contribute to this goal by defining the direction of current and future research and by building conceptual links between disciplines. In articles presenting an empirical analysis, the results of these analyses must be integrated within a broader evolutionary framework.
Authors are encouraged to submit papers presenting novel conceptual frameworks or major challenges to accepted ideas.
While brevity is encouraged, there is no formal restriction on length for major articles.
The journal aims to keep the time between original submission and appearance online to within four months and will encourage authors to revise rapidly once a paper has been submitted and deemed acceptable.