A Specialized Combination: The Relationship between Reproductive Structure Arrangement and Breeding Systems in oil-rewarding Calceolaria Species (Calceolariaceae)
María J. Ramírez, Catalina Escanilla-Jaramillo, Maureen M. Murúa
{"title":"A Specialized Combination: The Relationship between Reproductive Structure Arrangement and Breeding Systems in oil-rewarding Calceolaria Species (Calceolariaceae)","authors":"María J. Ramírez, Catalina Escanilla-Jaramillo, Maureen M. Murúa","doi":"10.1007/s11692-024-09639-2","DOIUrl":null,"url":null,"abstract":"<p>Plants have different strategies to avoid selfing and buffer its negative consequences on plant fitness. One strategy is the arrangement of petals and the disposition of the reproductive structures (RS) inside the flowers, allowing the development of different pollination mechanisms. In <i>Calceolaria</i> L. species two possible floral phenotypes can be found: short RS protected by the upper corolla lip (nototribic flowers) and long RS resting in the lower corolla lip (sternotribic flowers), the latter being hypothesized to favor selfing.</p><p>We selected 13 <i>Calceolaria</i> taxa and characterized their floral phenotype as nototribic or sternotribic, measured RS length and herkogamy, and performed hand-pollination treatments to determine the number of seeds produced by self- and cross-pollination to test whether floral phenotype influences inbreeding. GLMs analysis was performed to determine the differences between the sizes of RS and both floral phenotypes, and LMM was performed to evaluate the relationship between the RS and inbreeding with both floral phenotypes.</p><p>We found a relationship between stamen length and herkogamy in both floral phenotypes, where sternotribic flowers have a higher stamen length and lower herkogamy, whereas the opposite occurred in taxa with nototribic morphology. Stamen length significantly influences the inbreeding with sternotribic flowers having a higher inbreeding depression by geitonogamous self-pollination than nototribic ones.</p><p>Our results suggest that plants may evolve different reproductive mechanisms to cope with pollination unreliability. Thus, floral phenotype may favor the development of geitonogamy selfing, which may explain the two floral phenotypes present in this specialized oil-secreting genus.</p>","PeriodicalId":50471,"journal":{"name":"Evolutionary Biology","volume":"22 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11692-024-09639-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants have different strategies to avoid selfing and buffer its negative consequences on plant fitness. One strategy is the arrangement of petals and the disposition of the reproductive structures (RS) inside the flowers, allowing the development of different pollination mechanisms. In Calceolaria L. species two possible floral phenotypes can be found: short RS protected by the upper corolla lip (nototribic flowers) and long RS resting in the lower corolla lip (sternotribic flowers), the latter being hypothesized to favor selfing.
We selected 13 Calceolaria taxa and characterized their floral phenotype as nototribic or sternotribic, measured RS length and herkogamy, and performed hand-pollination treatments to determine the number of seeds produced by self- and cross-pollination to test whether floral phenotype influences inbreeding. GLMs analysis was performed to determine the differences between the sizes of RS and both floral phenotypes, and LMM was performed to evaluate the relationship between the RS and inbreeding with both floral phenotypes.
We found a relationship between stamen length and herkogamy in both floral phenotypes, where sternotribic flowers have a higher stamen length and lower herkogamy, whereas the opposite occurred in taxa with nototribic morphology. Stamen length significantly influences the inbreeding with sternotribic flowers having a higher inbreeding depression by geitonogamous self-pollination than nototribic ones.
Our results suggest that plants may evolve different reproductive mechanisms to cope with pollination unreliability. Thus, floral phenotype may favor the development of geitonogamy selfing, which may explain the two floral phenotypes present in this specialized oil-secreting genus.
期刊介绍:
The aim, scope, and format of Evolutionary Biology will be based on the following principles:
Evolutionary Biology will publish original articles and reviews that address issues and subjects of core concern in evolutionary biology. All papers must make original contributions to our understanding of the evolutionary process.
The journal will remain true to the original intent of the original series to provide a place for broad syntheses in evolutionary biology. Articles will contribute to this goal by defining the direction of current and future research and by building conceptual links between disciplines. In articles presenting an empirical analysis, the results of these analyses must be integrated within a broader evolutionary framework.
Authors are encouraged to submit papers presenting novel conceptual frameworks or major challenges to accepted ideas.
While brevity is encouraged, there is no formal restriction on length for major articles.
The journal aims to keep the time between original submission and appearance online to within four months and will encourage authors to revise rapidly once a paper has been submitted and deemed acceptable.