Line spacing effect on the giant magnetoimpedance behavior on microribbon with meander type: a comparison of theory and experiment

IF 1.6 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Sensor Review Pub Date : 2024-04-23 DOI:10.1108/sr-08-2023-0325
Zhenbao Wang, Zhen Yang, Mengyu Liu, Ziqin Meng, Xuecheng Sun, Huang Yong, Xun Sun, Xiang Lv
{"title":"Line spacing effect on the giant magnetoimpedance behavior on microribbon with meander type: a comparison of theory and experiment","authors":"Zhenbao Wang, Zhen Yang, Mengyu Liu, Ziqin Meng, Xuecheng Sun, Huang Yong, Xun Sun, Xiang Lv","doi":"10.1108/sr-08-2023-0325","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Microribbon with meander type based on giant magnetoimpedance (GMI) effect has become a research hot spot due to their higher sensitivity and spatial resolution. The purpose of this paper is to further optimize the line spacing to improve the performance of meanders for sensor application.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The model of GMI effect of microribbon with meander type is established. The effect of line spacing (Ls) on GMI behavior in meanders is analyzed systematically.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Comparison of theory and experiment indicates that decreasing the line spacing increases the negative mutual inductance and a consequent increase in the GMI effect. The maximum value of the GMI ratio increases from 69% to 91.8% (simulation results) and 16.9% to 51.4% (experimental results) when the line spacing is reduced from 400 to 50 µm. The contribution of line spacing versus line width to the GMI ratio of microribbon with meander type was contrasted. This behavior of the GMI ratio is dominated by the overall negative contribution of the mutual inductance.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This paper explores the effect of line spacing on the GMI ratio of meander type by comparing the simulation results with the experimental results. The superior line spacing is found in the identical sensing area. The findings will contribute to the design of high-performance micropatterned ribbon with meander-type GMI sensors and the establishment of a ribbon-based magnetic-sensitive biosensing system.</p><!--/ Abstract__block -->","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":"24 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-08-2023-0325","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Microribbon with meander type based on giant magnetoimpedance (GMI) effect has become a research hot spot due to their higher sensitivity and spatial resolution. The purpose of this paper is to further optimize the line spacing to improve the performance of meanders for sensor application.

Design/methodology/approach

The model of GMI effect of microribbon with meander type is established. The effect of line spacing (Ls) on GMI behavior in meanders is analyzed systematically.

Findings

Comparison of theory and experiment indicates that decreasing the line spacing increases the negative mutual inductance and a consequent increase in the GMI effect. The maximum value of the GMI ratio increases from 69% to 91.8% (simulation results) and 16.9% to 51.4% (experimental results) when the line spacing is reduced from 400 to 50 µm. The contribution of line spacing versus line width to the GMI ratio of microribbon with meander type was contrasted. This behavior of the GMI ratio is dominated by the overall negative contribution of the mutual inductance.

Originality/value

This paper explores the effect of line spacing on the GMI ratio of meander type by comparing the simulation results with the experimental results. The superior line spacing is found in the identical sensing area. The findings will contribute to the design of high-performance micropatterned ribbon with meander-type GMI sensors and the establishment of a ribbon-based magnetic-sensitive biosensing system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线间距对蜿蜒型微晶带巨磁阻行为的影响:理论与实验比较
目的基于巨磁阻(GMI)效应的蜿蜒型微带因其更高的灵敏度和空间分辨率而成为研究热点。本文旨在进一步优化线间距,以提高蜿蜒型微带在传感器应用中的性能。研究结果理论与实验比较表明,减小线间距会增加负互感,从而增加 GMI 效应。当线间距从 400 微米减小到 50 微米时,GMI 比率的最大值从 69% 增加到 91.8%(模拟结果),从 16.9% 增加到 51.4%(实验结果)。线间距与线宽对蜿蜒型微带的 GMI 比率的贡献形成了对比。本文通过比较模拟结果和实验结果,探讨了线间距对蜿蜒型微带的 GMI 比的影响。在相同的感应区域,线间距更优。这些发现将有助于设计具有蜿蜒型 GMI 传感器的高性能微图案色带和建立基于色带的磁敏生物传感系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensor Review
Sensor Review 工程技术-仪器仪表
CiteScore
3.40
自引率
6.20%
发文量
50
审稿时长
3.7 months
期刊介绍: Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments. Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles. All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable. Sensor Review’s coverage includes, but is not restricted to: Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors Temperature sensors, infrared sensors, humidity sensors Optical, electro-optical and fibre-optic sensors and systems, photonic sensors Biosensors, wearable and implantable sensors and systems, immunosensors Gas and chemical sensors and systems, polymer sensors Acoustic and ultrasonic sensors Haptic sensors and devices Smart and intelligent sensors and systems Nanosensors, NEMS, MEMS, and BioMEMS Quantum sensors Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.
期刊最新文献
Multi-sensor integration on one microfluidics chip for single-stranded DNA detection Advances in drift compensation algorithms for electronic nose technology A novel Au-NPs/DBTTA nanocomposite-based electrochemical sensor for the detection of ascorbic acid (AA) A step length estimation method based on frequency domain feature analysis and gait recognition for pedestrian dead reckoning Liquid viscosity measurement based on disk-shaped electromechanical resonator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1