Manifestation of the Hexatic Phase in Confined Two-Dimensional Systems with Circular Symmetry

E. G. Nikonov, R. G. Nazmitdinov, P. I. Glukhovtsev
{"title":"Manifestation of the Hexatic Phase in Confined Two-Dimensional Systems with Circular Symmetry","authors":"E. G. Nikonov, R. G. Nazmitdinov, P. I. Glukhovtsev","doi":"10.1134/s1027451024020149","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Quasi-two-dimensional systems play an important role in the manufacture of various devices for the needs of nanoelectronics. Obviously, the functional efficiency of such systems depends on their structure, which can change during phase transitions under the influence of external conditions (e.g., temperature). Until now, the main attention has been focused on the search for signals of phase transitions in continuous two-dimensional systems. One of the central issues is the analysis of conditions for the nucleation of the hexatic phase in such systems, which is accompanied by the appearance of defects in the Wigner crystalline phase at a certain temperature. However, both practical and fundamental questions arise about the critical number of electrons at which the symmetry of the crystal lattice in the system under consideration will begin to break and, consequently, the nucleation of defects will start. The dependences of the orientational order parameter and the correlation function, which characterize topological phase transitions, as functions of the number of particles at zero temperature have been studied. The calculation results allow us to establish the precursors of the phase transition from the hexagonal phase to the hexatic one for <i>N</i> = 92, 136, and 187 considered as an example.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1027451024020149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Quasi-two-dimensional systems play an important role in the manufacture of various devices for the needs of nanoelectronics. Obviously, the functional efficiency of such systems depends on their structure, which can change during phase transitions under the influence of external conditions (e.g., temperature). Until now, the main attention has been focused on the search for signals of phase transitions in continuous two-dimensional systems. One of the central issues is the analysis of conditions for the nucleation of the hexatic phase in such systems, which is accompanied by the appearance of defects in the Wigner crystalline phase at a certain temperature. However, both practical and fundamental questions arise about the critical number of electrons at which the symmetry of the crystal lattice in the system under consideration will begin to break and, consequently, the nucleation of defects will start. The dependences of the orientational order parameter and the correlation function, which characterize topological phase transitions, as functions of the number of particles at zero temperature have been studied. The calculation results allow us to establish the precursors of the phase transition from the hexagonal phase to the hexatic one for N = 92, 136, and 187 considered as an example.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有圆形对称性的密闭二维系统中六方相的表现形式
摘要 准二维系统在制造满足纳米电子学需求的各种器件中发挥着重要作用。显然,这类系统的功能效率取决于其结构,而在相变过程中,结构会在外部条件(如温度)的影响下发生变化。迄今为止,人们的主要注意力都集中在寻找连续二维系统中的相变信号上。其中一个核心问题是分析此类体系中六方相成核的条件,在一定温度下,六方相会伴随着维格纳晶体相缺陷的出现。然而,在所考虑的体系中,临界电子数在多大程度上会开始破坏晶格的对称性,从而导致缺陷成核,这既是实际问题,也是基本问题。我们研究了零温度下表征拓扑相变的定向有序参数和相关函数与粒子数量的函数关系。以 N = 92、136 和 187 为例,通过计算结果,我们确定了从六方相到六方相的相变前兆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
25.00%
发文量
144
审稿时长
3-8 weeks
期刊介绍: Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.
期刊最新文献
Study of the Influence of Counterbody Material on the Tribological Characteristics of Carbon Composites Based on Fabric Prepregs Low Dissipative State of Bi2Se3 and Bi2Te3 Surfaces Effect of Electron Irradiation on the Optical Properties of Zinc Oxide Powder Modified with Magnesium Oxide Nanoparticles Complex Diagnostics of Silicon-on-Insulator Layers after Ion Implantation and Annealing Effect of the Implantation of $${\text{O}}_{{\text{2}}}^{ + }$$ Ions on the Composition and Electronic Structure of CdS Films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1