{"title":"Some Properties of Argon as an Actinometric Atom. I. Metastable Levels Excitation","authors":"V. P. Kudrya","doi":"10.1134/s1063739723600140","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Using argon as an actinometric atom requires knowledge of its electron excitation kinetics. In turn, this kinetics is largely determined by electron impact excitation cross-sections as well as quenching rate constants for the argon metastable levels. Unfortunately, the published experimental data for these cross-sections differ both in their magnitude and in the type of energy dependence. We have shown that if we exclude the first point from the 2004 data sets, then the cross sections normalized at the 20 eV point can be fairly well approximated by well-known fitting formulas.</p>","PeriodicalId":21534,"journal":{"name":"Russian Microelectronics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1063739723600140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Using argon as an actinometric atom requires knowledge of its electron excitation kinetics. In turn, this kinetics is largely determined by electron impact excitation cross-sections as well as quenching rate constants for the argon metastable levels. Unfortunately, the published experimental data for these cross-sections differ both in their magnitude and in the type of energy dependence. We have shown that if we exclude the first point from the 2004 data sets, then the cross sections normalized at the 20 eV point can be fairly well approximated by well-known fitting formulas.
期刊介绍:
Russian Microelectronics covers physical, technological, and some VLSI and ULSI circuit-technical aspects of microelectronics and nanoelectronics; it informs the reader of new trends in submicron optical, x-ray, electron, and ion-beam lithography technology; dry processing techniques, etching, doping; and deposition and planarization technology. Significant space is devoted to problems arising in the application of proton, electron, and ion beams, plasma, etc. Consideration is given to new equipment, including cluster tools and control in situ and submicron CMOS, bipolar, and BICMOS technologies. The journal publishes papers addressing problems of molecular beam epitaxy and related processes; heterojunction devices and integrated circuits; the technology and devices of nanoelectronics; and the fabrication of nanometer scale devices, including new device structures, quantum-effect devices, and superconducting devices. The reader will find papers containing news of the diagnostics of surfaces and microelectronic structures, the modeling of technological processes and devices in micro- and nanoelectronics, including nanotransistors, and solid state qubits.