Calibration of Decision-Based Crowd-Behaviour Model

Jana Vacková, Marek Bukáček
{"title":"Calibration of Decision-Based Crowd-Behaviour Model","authors":"Jana Vacková, Marek Bukáček","doi":"10.17815/cd.2024.155","DOIUrl":null,"url":null,"abstract":"Various methods of calibration are used depending on the model type, application, and individual preferences. While there is no universally applicable method, statistical techniques became popular in recent decades. Introduced calibration concept consists of separate calibration episodes to avoid choosing only a few metrics to describe the whole system and a high computational time increasing exponentially with the number of parameters. These episodes are designed to be separated from each other and to cover one type of pedestrian behaviour captured by some model parameters. The design of the calibration quantities; estimate of the needed simulation time to get stationary results; and the number of iterations by Chebyshev's inequality influencing the quality of the results are discussed. Furthermore, hypothesis testing (James' test) is used to compare the model and experimental data. This calibration process can be applied for any pedestrian model; this paper deals with its application on the crowd-behaviour phase in the author's decision based model.","PeriodicalId":93276,"journal":{"name":"Collective dynamics","volume":"49 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collective dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17815/cd.2024.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Various methods of calibration are used depending on the model type, application, and individual preferences. While there is no universally applicable method, statistical techniques became popular in recent decades. Introduced calibration concept consists of separate calibration episodes to avoid choosing only a few metrics to describe the whole system and a high computational time increasing exponentially with the number of parameters. These episodes are designed to be separated from each other and to cover one type of pedestrian behaviour captured by some model parameters. The design of the calibration quantities; estimate of the needed simulation time to get stationary results; and the number of iterations by Chebyshev's inequality influencing the quality of the results are discussed. Furthermore, hypothesis testing (James' test) is used to compare the model and experimental data. This calibration process can be applied for any pedestrian model; this paper deals with its application on the crowd-behaviour phase in the author's decision based model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
校准基于决策的人群行为模型
根据模型类型、应用和个人偏好,校准方法多种多样。虽然没有放之四海而皆准的方法,但统计技术在近几十年来逐渐流行起来。引入的校准概念包括独立的校准事件,以避免只选择几个指标来描述整个系统,以及计算时间随参数数量呈指数增长。这些事件被设计为相互分离,并涵盖由某些模型参数捕捉到的一种行人行为。本文讨论了校准量的设计、获得静态结果所需模拟时间的估算,以及影响结果质量的切比雪夫不等式迭代次数。此外,还使用了假设检验(詹姆斯检验)来比较模型和实验数据。该校准过程可应用于任何行人模型;本文讨论了其在作者基于决策的模型中人群行为阶段的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
23 weeks
期刊最新文献
Improving Pedestrian Dynamics Predictions Using Neighboring Factors Evaluation of Data Fitting Approaches for Speed/Flow Density Relationships Numerical and Theoretical Analysis of a New One-Dimensional Cellular Automaton Model for Bidirectional Flows Are Depth Field Cameras Preserving Anonymity? Pilot Study of Mental Simulation of People Movement During Evacuations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1