Arthur Rohaert, J. Wahlqvist, H. Najmanová, Nikolai Bode, E. Ronchi
{"title":"Evaluation of Data Fitting Approaches for Speed/Flow Density Relationships","authors":"Arthur Rohaert, J. Wahlqvist, H. Najmanová, Nikolai Bode, E. Ronchi","doi":"10.17815/cd.2024.177","DOIUrl":null,"url":null,"abstract":"This paper presents guidance on data-fitting approaches in the context of pedestrian and evacuation dynamics research. In particular, it examines parametric and non-parametric regression techniques for analysing speed/flow density relationships. Parametric models assume predefined functional forms, while non-parametric models provide flexibility to capture complex relationships. This paper evaluates a range of traditional statistical approaches and machine-learning techniques. It emphasises the importance of weighting unbalanced datasets to enhance model accuracy. Practical applications are illustrated using traffic and pedestrian evacuation data. \nThis paper is intended to stimulate discussion on best practices for developing, calibrating, and testing macroscopic and microscopic evacuation models. It does not prescribe a one-size-fits-all solution for evacuation data fitting approaches, but it provides an overview of existing methods and analyses their advantages and limitations.","PeriodicalId":93276,"journal":{"name":"Collective dynamics","volume":"59 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collective dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17815/cd.2024.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents guidance on data-fitting approaches in the context of pedestrian and evacuation dynamics research. In particular, it examines parametric and non-parametric regression techniques for analysing speed/flow density relationships. Parametric models assume predefined functional forms, while non-parametric models provide flexibility to capture complex relationships. This paper evaluates a range of traditional statistical approaches and machine-learning techniques. It emphasises the importance of weighting unbalanced datasets to enhance model accuracy. Practical applications are illustrated using traffic and pedestrian evacuation data.
This paper is intended to stimulate discussion on best practices for developing, calibrating, and testing macroscopic and microscopic evacuation models. It does not prescribe a one-size-fits-all solution for evacuation data fitting approaches, but it provides an overview of existing methods and analyses their advantages and limitations.