Evaluation of Data Fitting Approaches for Speed/Flow Density Relationships

Arthur Rohaert, J. Wahlqvist, H. Najmanová, Nikolai Bode, E. Ronchi
{"title":"Evaluation of Data Fitting Approaches for Speed/Flow Density Relationships","authors":"Arthur Rohaert, J. Wahlqvist, H. Najmanová, Nikolai Bode, E. Ronchi","doi":"10.17815/cd.2024.177","DOIUrl":null,"url":null,"abstract":"This paper presents guidance on data-fitting approaches in the context of pedestrian and evacuation dynamics research. In particular, it examines parametric and non-parametric regression techniques for analysing speed/flow density relationships. Parametric models assume predefined functional forms, while non-parametric models provide flexibility to capture complex relationships. This paper evaluates a range of traditional statistical approaches and machine-learning techniques. It emphasises the importance of weighting unbalanced datasets to enhance model accuracy. Practical applications are illustrated using traffic and pedestrian evacuation data. \nThis paper is intended to stimulate discussion on best practices for developing, calibrating, and testing macroscopic and microscopic evacuation models. It does not prescribe a one-size-fits-all solution for evacuation data fitting approaches, but it provides an overview of existing methods and analyses their advantages and limitations.","PeriodicalId":93276,"journal":{"name":"Collective dynamics","volume":"59 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collective dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17815/cd.2024.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents guidance on data-fitting approaches in the context of pedestrian and evacuation dynamics research. In particular, it examines parametric and non-parametric regression techniques for analysing speed/flow density relationships. Parametric models assume predefined functional forms, while non-parametric models provide flexibility to capture complex relationships. This paper evaluates a range of traditional statistical approaches and machine-learning techniques. It emphasises the importance of weighting unbalanced datasets to enhance model accuracy. Practical applications are illustrated using traffic and pedestrian evacuation data. This paper is intended to stimulate discussion on best practices for developing, calibrating, and testing macroscopic and microscopic evacuation models. It does not prescribe a one-size-fits-all solution for evacuation data fitting approaches, but it provides an overview of existing methods and analyses their advantages and limitations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
速度/流量密度关系的数据拟合方法评估
本文就行人和疏散动力学研究中的数据拟合方法提供指导。特别是,本文探讨了用于分析速度/人流密度关系的参数和非参数回归技术。参数模型假定了预定义的函数形式,而非参数模型则提供了捕捉复杂关系的灵活性。本文评估了一系列传统统计方法和机器学习技术。它强调了对不平衡数据集进行加权以提高模型准确性的重要性。本文使用交通和行人疏散数据对实际应用进行了说明。本文旨在激发对开发、校准和测试宏观和微观疏散模型最佳实践的讨论。本文并没有为疏散数据拟合方法规定一个放之四海而皆准的解决方案,但概述了现有方法并分析了其优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
23 weeks
期刊最新文献
Improving Pedestrian Dynamics Predictions Using Neighboring Factors Evaluation of Data Fitting Approaches for Speed/Flow Density Relationships Numerical and Theoretical Analysis of a New One-Dimensional Cellular Automaton Model for Bidirectional Flows Are Depth Field Cameras Preserving Anonymity? Pilot Study of Mental Simulation of People Movement During Evacuations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1