Alrayan F. Nahhas , Alaa F. Nahhas , Thomas J. Webster
{"title":"The nano and artificial intelligence effect: Improved magnetic resonance imaging volumetry for multiple sclerosis","authors":"Alrayan F. Nahhas , Alaa F. Nahhas , Thomas J. Webster","doi":"10.1016/j.onano.2024.100209","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetic Resonance Imaging (MRI) is a widely established method for monitoring and diagnosing neurological diseases, including multiple sclerosis (MS). MS is a disease that continuously progresses and in due course involves the progressive atrophy of neural structures (such as brain gray and white matter) leading to debilitation. Clearly, the earlier that MS can be detected, the better the chances of eventual treatment to slow down disease progression. While conventional MRI volumetry, as a non-invasive imaging technique that measures the exact volume of different brain structures, has improved the diagnosis of brain atrophy, problems still exist. This review introduces and summarizes the seminal role that nanotechnology (in terms of novel materials for improved MS diagnosis and treatment) and artificial intelligence (in terms of enhancing images via computer algorithms and novel contrast agents) are playing in improving volumetric MRI. In doing so, this one-of-a-kind review manuscript establishes how nanotechnology and artificial intelligence is improving, and will continue to improve, volumetric MRI diagnosis and treatment of MS.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"18 ","pages":"Article 100209"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952024000100/pdfft?md5=bf67a72f48a641e38736e831df3f694f&pid=1-s2.0-S2352952024000100-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352952024000100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic Resonance Imaging (MRI) is a widely established method for monitoring and diagnosing neurological diseases, including multiple sclerosis (MS). MS is a disease that continuously progresses and in due course involves the progressive atrophy of neural structures (such as brain gray and white matter) leading to debilitation. Clearly, the earlier that MS can be detected, the better the chances of eventual treatment to slow down disease progression. While conventional MRI volumetry, as a non-invasive imaging technique that measures the exact volume of different brain structures, has improved the diagnosis of brain atrophy, problems still exist. This review introduces and summarizes the seminal role that nanotechnology (in terms of novel materials for improved MS diagnosis and treatment) and artificial intelligence (in terms of enhancing images via computer algorithms and novel contrast agents) are playing in improving volumetric MRI. In doing so, this one-of-a-kind review manuscript establishes how nanotechnology and artificial intelligence is improving, and will continue to improve, volumetric MRI diagnosis and treatment of MS.
期刊介绍:
OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.