Micro-channels array device fabricated via two photon lithography for cell migration studies in Neuroblastoma metastatic dissemination

Q2 Pharmacology, Toxicology and Pharmaceutics OpenNano Pub Date : 2025-01-15 DOI:10.1016/j.onano.2025.100233
Sara Micheli , Caterina Piunti , Elisa Varaschin , Marianna Peditto , Maria Luz Suarez , Marco Sorgato , Elisa Cimetta
{"title":"Micro-channels array device fabricated via two photon lithography for cell migration studies in Neuroblastoma metastatic dissemination","authors":"Sara Micheli ,&nbsp;Caterina Piunti ,&nbsp;Elisa Varaschin ,&nbsp;Marianna Peditto ,&nbsp;Maria Luz Suarez ,&nbsp;Marco Sorgato ,&nbsp;Elisa Cimetta","doi":"10.1016/j.onano.2025.100233","DOIUrl":null,"url":null,"abstract":"<div><div>Detailed studies of cells migration are key in understanding tumors metastatic spread. We used two-photon polymerization (2PP) to create precise microdevices for studying cell migration through micro-channels at a single cell resolution. Micro-channels are designed to mimic the structure of lymphatic vessels, conduits for cell movement in vivo. Neuroblastoma (NB) and human Mesenchymal Stem Cells (MSCs) represent the main tumor and its primary metastatic site. Our results revealed distinctive behaviors of NB and MSCs, both individually and in co-culture, hinting at a tumor-suppressive role of MSCs inhibiting NB migration. Pre-exposure of MSCs to NB-derived extracellular vesicles (EVs) significantly increased their motility towards tumor cells. Our platform more effectively replicates the in vivo environment of metastatic migration, with results providing new insights into the early dissemination of NB. Such microdevices hold great promise for advancing our understanding of metastasis and aiding the development of targeted anti-cancer therapies.</div></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"22 ","pages":"Article 100233"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352952025000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Detailed studies of cells migration are key in understanding tumors metastatic spread. We used two-photon polymerization (2PP) to create precise microdevices for studying cell migration through micro-channels at a single cell resolution. Micro-channels are designed to mimic the structure of lymphatic vessels, conduits for cell movement in vivo. Neuroblastoma (NB) and human Mesenchymal Stem Cells (MSCs) represent the main tumor and its primary metastatic site. Our results revealed distinctive behaviors of NB and MSCs, both individually and in co-culture, hinting at a tumor-suppressive role of MSCs inhibiting NB migration. Pre-exposure of MSCs to NB-derived extracellular vesicles (EVs) significantly increased their motility towards tumor cells. Our platform more effectively replicates the in vivo environment of metastatic migration, with results providing new insights into the early dissemination of NB. Such microdevices hold great promise for advancing our understanding of metastasis and aiding the development of targeted anti-cancer therapies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
OpenNano
OpenNano Medicine-Pharmacology (medical)
CiteScore
4.10
自引率
0.00%
发文量
63
审稿时长
50 days
期刊介绍: OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.
期刊最新文献
Resveratrol loaded zein nanoparticles for inhibiting proliferation of osteosarcoma cells: Synthesis, characterization, release profile, and cytotoxicity Osteogenic differentiation of mesenchymal stem cells in cell-laden culture of self-assembling peptide hydrogels Carrageenan bionanocomposite films incorporating Ag and Zn-Doped CeO₂ nanoparticles for active food packaging applications Micro-channels array device fabricated via two photon lithography for cell migration studies in Neuroblastoma metastatic dissemination Enhancing in Vitro anti-metastatic efficacy and deep penetration into tumor spheroid of docetaxel-loaded liposomes via size optimization for prostate cancer treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1