Osteogenic differentiation of mesenchymal stem cells in cell-laden culture of self-assembling peptide hydrogels

Q2 Pharmacology, Toxicology and Pharmaceutics OpenNano Pub Date : 2025-01-28 DOI:10.1016/j.onano.2025.100235
Faye Fouladgar , Robert Powell , Vishalakshi Irukuvarjula , Akhila Joy , Xiao Li , Neda Habibi
{"title":"Osteogenic differentiation of mesenchymal stem cells in cell-laden culture of self-assembling peptide hydrogels","authors":"Faye Fouladgar ,&nbsp;Robert Powell ,&nbsp;Vishalakshi Irukuvarjula ,&nbsp;Akhila Joy ,&nbsp;Xiao Li ,&nbsp;Neda Habibi","doi":"10.1016/j.onano.2025.100235","DOIUrl":null,"url":null,"abstract":"<div><div>Mesenchymal stem cell (MSC) osteogenic differentiation requires scaffolds to support multiple stages of growth and differentiation signals. Fluorenyl-9-methoxycarbonyl diphenylalanine (Fmoc-FF) peptides self-assemble to create 3D nanofibers. Here, we cultured MSC in 2D and 3D Fmoc-FF layers to support their osteogenic differentiation. The stiffness of the hydrogels was tunable between 100 and 10,000 Pa which allows precise modulation of the cellular microenvironment. Scaffold stiffness impacted cell viability which softer scaffolds (100 Pa) favored higher viability. MSC formed spheroids in 3D hydrogel and showed spread morphology in 2D overlayers. Our results demonstrate that the Fmoc-FF 3D cultures significantly enhanced osteogenic differentiation, as evidenced by increased calcium deposition, elevated phosphatase activity, and the secretion of osteocalcin. We propose that the peptides provide integrin-binding sites that activate a cytoplasmic feedback loop essential for differentiation. These findings suggest that self-assembled Fmoc-FF peptide hydrogels, is a promising platform for bone tissue engineering applications.</div></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"22 ","pages":"Article 100235"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352952025000040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Mesenchymal stem cell (MSC) osteogenic differentiation requires scaffolds to support multiple stages of growth and differentiation signals. Fluorenyl-9-methoxycarbonyl diphenylalanine (Fmoc-FF) peptides self-assemble to create 3D nanofibers. Here, we cultured MSC in 2D and 3D Fmoc-FF layers to support their osteogenic differentiation. The stiffness of the hydrogels was tunable between 100 and 10,000 Pa which allows precise modulation of the cellular microenvironment. Scaffold stiffness impacted cell viability which softer scaffolds (100 Pa) favored higher viability. MSC formed spheroids in 3D hydrogel and showed spread morphology in 2D overlayers. Our results demonstrate that the Fmoc-FF 3D cultures significantly enhanced osteogenic differentiation, as evidenced by increased calcium deposition, elevated phosphatase activity, and the secretion of osteocalcin. We propose that the peptides provide integrin-binding sites that activate a cytoplasmic feedback loop essential for differentiation. These findings suggest that self-assembled Fmoc-FF peptide hydrogels, is a promising platform for bone tissue engineering applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
OpenNano
OpenNano Medicine-Pharmacology (medical)
CiteScore
4.10
自引率
0.00%
发文量
63
审稿时长
50 days
期刊介绍: OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.
期刊最新文献
Resveratrol loaded zein nanoparticles for inhibiting proliferation of osteosarcoma cells: Synthesis, characterization, release profile, and cytotoxicity Osteogenic differentiation of mesenchymal stem cells in cell-laden culture of self-assembling peptide hydrogels Carrageenan bionanocomposite films incorporating Ag and Zn-Doped CeO₂ nanoparticles for active food packaging applications Micro-channels array device fabricated via two photon lithography for cell migration studies in Neuroblastoma metastatic dissemination Enhancing in Vitro anti-metastatic efficacy and deep penetration into tumor spheroid of docetaxel-loaded liposomes via size optimization for prostate cancer treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1