Carrageenan bionanocomposite films incorporating Ag and Zn-Doped CeO₂ nanoparticles for active food packaging applications

Q2 Pharmacology, Toxicology and Pharmaceutics OpenNano Pub Date : 2025-01-18 DOI:10.1016/j.onano.2025.100234
Damar Rastri Adhika , Gita Genecya , Alvin Annayya Habibah , An Naas Amalia Rahardja Putri , Ubed Sonai Fahruddin Arrozi
{"title":"Carrageenan bionanocomposite films incorporating Ag and Zn-Doped CeO₂ nanoparticles for active food packaging applications","authors":"Damar Rastri Adhika ,&nbsp;Gita Genecya ,&nbsp;Alvin Annayya Habibah ,&nbsp;An Naas Amalia Rahardja Putri ,&nbsp;Ubed Sonai Fahruddin Arrozi","doi":"10.1016/j.onano.2025.100234","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing demand for sustainable and safe food packaging has led to the exploration of bio-based materials and advanced packaging technologies. This study investigates the incorporation of silver (Ag) and zinc (Zn) doped cerium oxide nanoparticles (CeO₂ NPs) into carrageenan-based bionanocomposite films to enhance their antimicrobial properties, mechanical strength, and hydrophobicity. The synthesis of CeO₂ NPs, doped with varying concentrations of Ag and Zn, was achieved using the green synthesis method with green tea extract as a reducing agent. Characterization techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), and Zeta potential analysis confirmed the successful doping and stability of the nanoparticles. The bionanocomposites were evaluated for their mechanical properties, water contact angle, and antibacterial activity against <em>Escherichia coli</em> and <em>Bacillus cereus</em>. Mechanical testing revealed that the addition of CeO₂ NPs, particularly Ag-doped CeO₂ NPs, significantly improved the tensile strength and Young's modulus of the bionanocomposites. Hydrophobicity assessments showed that Zn-doped CeO₂ NPs enhanced water resistance compared to Ag-doped CeO₂ NPs, making them more suitable for food packaging applications. Zn and Ag-doped CeO₂ NPs exhibited superior antibacterial activity compared to undoped CeO₂ NPs, with 20 wt% Ag-doped NPs showing the highest antibacterial activity compared to Amoxicillin as positive control and other variations. The study concludes that Zn and Ag-doped CeO₂ NPs are promising additives for developing effective and sustainable active food packaging materials.</div></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"22 ","pages":"Article 100234"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352952025000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for sustainable and safe food packaging has led to the exploration of bio-based materials and advanced packaging technologies. This study investigates the incorporation of silver (Ag) and zinc (Zn) doped cerium oxide nanoparticles (CeO₂ NPs) into carrageenan-based bionanocomposite films to enhance their antimicrobial properties, mechanical strength, and hydrophobicity. The synthesis of CeO₂ NPs, doped with varying concentrations of Ag and Zn, was achieved using the green synthesis method with green tea extract as a reducing agent. Characterization techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), and Zeta potential analysis confirmed the successful doping and stability of the nanoparticles. The bionanocomposites were evaluated for their mechanical properties, water contact angle, and antibacterial activity against Escherichia coli and Bacillus cereus. Mechanical testing revealed that the addition of CeO₂ NPs, particularly Ag-doped CeO₂ NPs, significantly improved the tensile strength and Young's modulus of the bionanocomposites. Hydrophobicity assessments showed that Zn-doped CeO₂ NPs enhanced water resistance compared to Ag-doped CeO₂ NPs, making them more suitable for food packaging applications. Zn and Ag-doped CeO₂ NPs exhibited superior antibacterial activity compared to undoped CeO₂ NPs, with 20 wt% Ag-doped NPs showing the highest antibacterial activity compared to Amoxicillin as positive control and other variations. The study concludes that Zn and Ag-doped CeO₂ NPs are promising additives for developing effective and sustainable active food packaging materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
OpenNano
OpenNano Medicine-Pharmacology (medical)
CiteScore
4.10
自引率
0.00%
发文量
63
审稿时长
50 days
期刊介绍: OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.
期刊最新文献
Resveratrol loaded zein nanoparticles for inhibiting proliferation of osteosarcoma cells: Synthesis, characterization, release profile, and cytotoxicity Osteogenic differentiation of mesenchymal stem cells in cell-laden culture of self-assembling peptide hydrogels Carrageenan bionanocomposite films incorporating Ag and Zn-Doped CeO₂ nanoparticles for active food packaging applications Micro-channels array device fabricated via two photon lithography for cell migration studies in Neuroblastoma metastatic dissemination Enhancing in Vitro anti-metastatic efficacy and deep penetration into tumor spheroid of docetaxel-loaded liposomes via size optimization for prostate cancer treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1