Advanced Graphene/Metal-Mesh Hybrid Transparent Electrodes via Ultraviolet (UV)–Ozone Treatment for UV-Range Optoelectronic Devices

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-21 DOI:10.1021/acsaelm.4c00652
Je-Sung Lee, Jung-Hong Min, Kyung-Pil Kim, Woo-Lim Jeong, Hoe-Min Kwak, Seung-Hyun Mun, Semi Oh, Jong-Ryeol Kim and Dong-Seon Lee*, 
{"title":"Advanced Graphene/Metal-Mesh Hybrid Transparent Electrodes via Ultraviolet (UV)–Ozone Treatment for UV-Range Optoelectronic Devices","authors":"Je-Sung Lee,&nbsp;Jung-Hong Min,&nbsp;Kyung-Pil Kim,&nbsp;Woo-Lim Jeong,&nbsp;Hoe-Min Kwak,&nbsp;Seung-Hyun Mun,&nbsp;Semi Oh,&nbsp;Jong-Ryeol Kim and Dong-Seon Lee*,&nbsp;","doi":"10.1021/acsaelm.4c00652","DOIUrl":null,"url":null,"abstract":"<p >The fabrication of advanced graphene/metal-mesh hybrid transparent electrodes (TEs) suitable for ultraviolet (UV)-range optoelectronic applications is reported herein, employing UV–ozone treatment. The UV–ozone treatment of transferred graphene is adopted to simultaneously enable oxidation doping and taint removal from the graphene surface and obtain the supplementary benefit of optical transmittance enhancement. Furthermore, the changes in the physical and chemical properties of graphene under different UV–ozone-treated times were characterized using Raman, X-ray/UV photoelectron spectroscopy, Hall measurements, and the transmission line method. Subsequently, hybrid structures combining various UV–ozone-treated graphene samples with a metal-mesh were tested as TEs in gallium nitride-based 375 nm near-UV light-emitting diodes (LEDs). Results indicate a noteworthy enhancement in light output power: a 48.3% increase relative to an untreated LED and an 18.3% increase compared to a conventional indium tin oxide (ITO)-based LED, particularly after 300 s of UV–ozone treatment. The present study provides a practical approach to overcome the limitations of existing ITO TEs for UV applications, thereby facilitating the future commercialization of graphene-based optoelectronic devices.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c00652","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The fabrication of advanced graphene/metal-mesh hybrid transparent electrodes (TEs) suitable for ultraviolet (UV)-range optoelectronic applications is reported herein, employing UV–ozone treatment. The UV–ozone treatment of transferred graphene is adopted to simultaneously enable oxidation doping and taint removal from the graphene surface and obtain the supplementary benefit of optical transmittance enhancement. Furthermore, the changes in the physical and chemical properties of graphene under different UV–ozone-treated times were characterized using Raman, X-ray/UV photoelectron spectroscopy, Hall measurements, and the transmission line method. Subsequently, hybrid structures combining various UV–ozone-treated graphene samples with a metal-mesh were tested as TEs in gallium nitride-based 375 nm near-UV light-emitting diodes (LEDs). Results indicate a noteworthy enhancement in light output power: a 48.3% increase relative to an untreated LED and an 18.3% increase compared to a conventional indium tin oxide (ITO)-based LED, particularly after 300 s of UV–ozone treatment. The present study provides a practical approach to overcome the limitations of existing ITO TEs for UV applications, thereby facilitating the future commercialization of graphene-based optoelectronic devices.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过紫外线 (UV) 臭氧处理实现先进的石墨烯/金属网混合透明电极,用于紫外范围光电器件
本文报告了利用紫外-臭氧处理技术制造适用于紫外(UV)范围光电应用的先进石墨烯/金属网混合透明电极(TEs)的情况。采用紫外臭氧处理转移的石墨烯,可同时实现石墨烯表面的氧化掺杂和污点去除,并获得光学透射率增强的辅助优势。此外,还利用拉曼光谱、X 射线/紫外光电子能谱、霍尔测量和传输线法对不同紫外臭氧处理时间下石墨烯物理和化学特性的变化进行了表征。随后,测试了将各种紫外臭氧处理过的石墨烯样品与金属网相结合的混合结构作为氮化镓基 375 nm 近紫外发光二极管 (LED) 的 TE。结果表明,石墨烯的光输出功率显著提高:与未经处理的 LED 相比提高了 48.3%,与传统的基于铟锡氧化物 (ITO) 的 LED 相比提高了 18.3%,尤其是在经过 300 秒的紫外臭氧处理之后。本研究为克服现有 ITO TE 在紫外线应用方面的局限性提供了一种实用方法,从而促进了未来基于石墨烯的光电器件的商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Intrinsic Thermomechanical Properties of Freestanding TEOS-SiO2 Thin Films Depending on Thickness Sea Urchin-Like NiO-CoO Heterostructure as High-Energy Supercapattery Electrode: Laboratory Prototype to Field Application of Pouch-type Device Recent Studies on Solid–Liquid Contact Electrification Piezoelectric and Triboelectric Contributions by Aromatic Hyperbranched Polyesters of Second-Generation/PVDF Nanofiber-Based Nanogenerators for Energy Harvesting and Wearable Electronics Fingerprint-Mimicking, ZIF-67 Decorated, Triboelectric Nanogenerator for IoT Cloud-Supported Self-Powered Smart Glove for Paralyzed Patient Care
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1