Carrier transport layer engineering of Cs2TiI2Br4 halide double perovskite solar cell via SCAPS 1D: Approaching the Shockley-Queisser limit

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2024-05-27 DOI:10.1016/j.micrna.2024.207881
Tasnim Tareq Ferdous , Sadia Sultana Urmi , Md Abdul Kaium Khan , Mohammad Abdul Alim
{"title":"Carrier transport layer engineering of Cs2TiI2Br4 halide double perovskite solar cell via SCAPS 1D: Approaching the Shockley-Queisser limit","authors":"Tasnim Tareq Ferdous ,&nbsp;Sadia Sultana Urmi ,&nbsp;Md Abdul Kaium Khan ,&nbsp;Mohammad Abdul Alim","doi":"10.1016/j.micrna.2024.207881","DOIUrl":null,"url":null,"abstract":"<div><p>All-inorganic Cs<sub>2</sub>TiI<sub>x</sub>Br<sub>(6-x)</sub>-based perovskite solar cells (PSCs) are recently attracting a lot of attention for their tunable bandgaps, earth abundance, non-toxicity, and ultra-stability. Among the Cs<sub>2</sub>TiI<sub>x</sub>Br<sub>(6-x)</sub> family of materials, Cs<sub>2</sub>TiI<sub>2</sub>Br<sub>4</sub> with a bandgap of ∼1.38 eV has the potential to be an excellent single junction solar cell material with a theoretically higher Shockley-Queisser limit of power conversion efficiency (PCE). Its excellent optoelectronic properties make it a potential candidate for being the highest-performing PSC from the Cs<sub>2</sub>TiI<sub>x</sub>Br<sub>(6-x)</sub> family. In our study, a total of eight hole transport materials (P3HT, PTAA, Spiro-OMeTAD, PEDOT:Pss, CuSCN, CuI, NiO, and MoO<sub>3</sub>) and six electron transport materials (PCBM, TiO<sub>2</sub>, CdS, SnO<sub>2</sub>, ZnO, and IGZO) were investigated to select suitable charge transport materials. The defect densities of interface and absorber, different absorber layer thicknesses, several metal work functions, series-shunt resistance, and temperature were investigated to derive the conditions for optimum performance. After thorough investigation, we derived four novel devices with the combination of all the organic and inorganic charge transport materials to provide optimum performance. Among them, the combination of inorganic SnO<sub>2</sub> and CuSCN as electron and hole transport layer respectively achieved the highest PCE of 23.41 %.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324001304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

All-inorganic Cs2TiIxBr(6-x)-based perovskite solar cells (PSCs) are recently attracting a lot of attention for their tunable bandgaps, earth abundance, non-toxicity, and ultra-stability. Among the Cs2TiIxBr(6-x) family of materials, Cs2TiI2Br4 with a bandgap of ∼1.38 eV has the potential to be an excellent single junction solar cell material with a theoretically higher Shockley-Queisser limit of power conversion efficiency (PCE). Its excellent optoelectronic properties make it a potential candidate for being the highest-performing PSC from the Cs2TiIxBr(6-x) family. In our study, a total of eight hole transport materials (P3HT, PTAA, Spiro-OMeTAD, PEDOT:Pss, CuSCN, CuI, NiO, and MoO3) and six electron transport materials (PCBM, TiO2, CdS, SnO2, ZnO, and IGZO) were investigated to select suitable charge transport materials. The defect densities of interface and absorber, different absorber layer thicknesses, several metal work functions, series-shunt resistance, and temperature were investigated to derive the conditions for optimum performance. After thorough investigation, we derived four novel devices with the combination of all the organic and inorganic charge transport materials to provide optimum performance. Among them, the combination of inorganic SnO2 and CuSCN as electron and hole transport layer respectively achieved the highest PCE of 23.41 %.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 SCAPS 1D 实现 Cs2TiI2Br4 卤化物双包晶太阳能电池的载流子传输层工程:接近肖克利-奎塞尔极限
基于铯钛硼的全无机包晶太阳能电池(PSCs)因其可调带隙、地球丰度、无毒性和超稳定性而受到广泛关注。在 CsTiIBr 系列材料中,带隙为∼1.38 eV 的 CsTiIBr 有潜力成为一种优秀的单结太阳能电池材料,理论上具有更高的肖克利-奎塞尔极限功率转换效率(PCE)。其优异的光电特性使其有可能成为铯钛硼家族中性能最高的 PSC。在我们的研究中,共研究了八种空穴传输材料(P3HT、PTAA、Spiro-OMeTAD、PEDOT:Pss、CuSCN、CuI、NiO 和 MoO)和六种电子传输材料(PCBM、TiO、CdS、SnO、ZnO 和 IGZO),以选择合适的电荷传输材料。我们研究了界面和吸收层的缺陷密度、不同的吸收层厚度、几种金属功函数、串并联电阻和温度,从而得出最佳性能的条件。经过深入研究,我们得出了四种新型器件,它们结合了所有有机和无机电荷传输材料,从而实现了最佳性能。其中,无机氧化锡和 CuSCN 分别作为电子和空穴传输层的组合实现了 23.41 % 的最高 PCE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Optical Interconnects for nano-scale VLSI applications Enhancing TFET performance through gate length optimization and doping control in phosphorene nanoribbons A novel nanoscale FD-SOI MOSFET with energy barrier and heat-sink engineering for enhanced electric field uniformity First principles study of the electronic structure and Li-ion diffusion properties of co-doped LIFex-1MxPyNy-1O4 (M=Co/Mn, NS/Si) Li-ion battery cathode materials Metamaterial structure design based on genetic algorithm and phase change material GST for multispectral camouflage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1