Effects of the in-plane uniaxial and biaxial strains on the electronic and optical properties of the graphene/β-Si3N4 heterostructure

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2024-05-25 DOI:10.1016/j.micrna.2024.207878
Hu Lu , Ningning Su , Junqiang Wang , Heng Ti , Shasha Wu , Mengwei Li
{"title":"Effects of the in-plane uniaxial and biaxial strains on the electronic and optical properties of the graphene/β-Si3N4 heterostructure","authors":"Hu Lu ,&nbsp;Ningning Su ,&nbsp;Junqiang Wang ,&nbsp;Heng Ti ,&nbsp;Shasha Wu ,&nbsp;Mengwei Li","doi":"10.1016/j.micrna.2024.207878","DOIUrl":null,"url":null,"abstract":"<div><p>van der Waals heterostructures can enable adjustment of graphene's electronic properties, which is important for the application of graphene-based electronic devices. The structural, electronic and optical properties of heterostructures composed of graphene and β-Si<sub>3</sub>N<sub>4</sub> under different strain conditions are studied in this paper using first-principle calculation. The result shows that the heterojunction constituted with β-Si<sub>3</sub>N<sub>4</sub> opens a small bandgap at the Brillouin zone Γ, which is about 0.099 eV, and the bandgap is highly sensitive to the direction and magnitude of strain. Under uniaxial compressive (tensile) strain, the heterojunction bandgap increases linearly, reaching 1.901 eV and 1.614 eV at −11 % and 11 %, respectively; under biaxial strain, the heterojunction bandgap decreases linearly with the compressive strain, decreasing to 0.087 eV at −11 %, and increases linearly with the tensile strain, reaching 0.113 eV at 11 %. And the rate of the bandgap under uniaxial strain is larger than that under biaxial strain, which suggests that the uniaxial strain regulation is more effective. Optical property study shows that uniaxial (biaxial) compressive strain improves the light absorption of the heterojunction in the blue-ultraviolet region band, especially when the uniaxial compressive strain reaches 9 %, the light absorption of the heterojunction increases significantly in the whole spectral interval. These research results will provide a theoretical basis for the practical applications of graphene and β-Si<sub>3</sub>N<sub>4</sub> heterostructures in the fields of pressure sensors and optical modulators.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324001274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

van der Waals heterostructures can enable adjustment of graphene's electronic properties, which is important for the application of graphene-based electronic devices. The structural, electronic and optical properties of heterostructures composed of graphene and β-Si3N4 under different strain conditions are studied in this paper using first-principle calculation. The result shows that the heterojunction constituted with β-Si3N4 opens a small bandgap at the Brillouin zone Γ, which is about 0.099 eV, and the bandgap is highly sensitive to the direction and magnitude of strain. Under uniaxial compressive (tensile) strain, the heterojunction bandgap increases linearly, reaching 1.901 eV and 1.614 eV at −11 % and 11 %, respectively; under biaxial strain, the heterojunction bandgap decreases linearly with the compressive strain, decreasing to 0.087 eV at −11 %, and increases linearly with the tensile strain, reaching 0.113 eV at 11 %. And the rate of the bandgap under uniaxial strain is larger than that under biaxial strain, which suggests that the uniaxial strain regulation is more effective. Optical property study shows that uniaxial (biaxial) compressive strain improves the light absorption of the heterojunction in the blue-ultraviolet region band, especially when the uniaxial compressive strain reaches 9 %, the light absorption of the heterojunction increases significantly in the whole spectral interval. These research results will provide a theoretical basis for the practical applications of graphene and β-Si3N4 heterostructures in the fields of pressure sensors and optical modulators.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面内单轴和双轴应变对石墨烯/β-Si3N4 异质结构的电子和光学特性的影响
范德华异质结构可以调整石墨烯的电子特性,这对于石墨烯基电子器件的应用非常重要。本文利用第一性原理计算研究了石墨烯和β-SiN组成的异质结构在不同应变条件下的结构、电子和光学特性。结果表明,由β-SiN构成的异质结在布里渊区Γ处打开了一个很小的带隙,约为0.099 eV,且带隙对应变的方向和大小高度敏感。在单轴压(拉)应变下,异质结带隙呈线性增长,在-11%和11%时分别达到1.901 eV和1.614 eV;在双轴应变下,异质结带隙随压应变呈线性下降,在-11%时下降到0.087 eV,随拉应变呈线性增长,在11%时达到0.113 eV。单轴应变下的带隙速率大于双轴应变下的带隙速率,这表明单轴应变调节更为有效。光学特性研究表明,单轴(双轴)压缩应变提高了异质结在蓝-紫外区带的光吸收,特别是当单轴压缩应变达到 9 % 时,异质结在整个光谱区间的光吸收显著增加。这些研究成果将为石墨烯和β-SiN异质结构在压力传感器和光调制器领域的实际应用提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Optical Interconnects for nano-scale VLSI applications Enhancing TFET performance through gate length optimization and doping control in phosphorene nanoribbons A novel nanoscale FD-SOI MOSFET with energy barrier and heat-sink engineering for enhanced electric field uniformity First principles study of the electronic structure and Li-ion diffusion properties of co-doped LIFex-1MxPyNy-1O4 (M=Co/Mn, NS/Si) Li-ion battery cathode materials Metamaterial structure design based on genetic algorithm and phase change material GST for multispectral camouflage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1