Siwei Qiao;Xinghua Liu;Gaoxi Xiao;Peng Wang;Shuzhi Sam Ge
{"title":"Reliable Control of Wind Power Systems Under Frequency-Based Deception Attacks: AMD Event-Triggered Strategy","authors":"Siwei Qiao;Xinghua Liu;Gaoxi Xiao;Peng Wang;Shuzhi Sam Ge","doi":"10.1109/TR.2024.3384063","DOIUrl":null,"url":null,"abstract":"A reliable adaptive-memory-derivative (AMD) event-triggered quantized sliding mode load frequency control (QSMLFC) method is proposed for the multiarea interconnected wind power system under frequency-based deception attacks. An AMD event-trigger scheme is proposed to promote the wind power system operation while saving the network resources, and the reliable AMD event-triggered QSMLFC method aims to reduce the frequency deviations of the interconnected wind power systems. A frequency-based deception attack model is developed for analyzing the security issues in network communications for wind power systems. The hysteresis quantizer is used to lower the communication rate. To validate the correctness of the control method, a sufficient reliability criterion is derived to prove the applicability of the AMD event-triggered QSMLFC. Three numerical examples and an IEEE 39-bus system simulation are presented to demonstrate that the reliable AMD event-triggered QSMLFC method can provide satisfactory stability performance for the wind power system under frequency-based deception attacks.","PeriodicalId":56305,"journal":{"name":"IEEE Transactions on Reliability","volume":"74 1","pages":"2027-2040"},"PeriodicalIF":5.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Reliability","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10543113/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
A reliable adaptive-memory-derivative (AMD) event-triggered quantized sliding mode load frequency control (QSMLFC) method is proposed for the multiarea interconnected wind power system under frequency-based deception attacks. An AMD event-trigger scheme is proposed to promote the wind power system operation while saving the network resources, and the reliable AMD event-triggered QSMLFC method aims to reduce the frequency deviations of the interconnected wind power systems. A frequency-based deception attack model is developed for analyzing the security issues in network communications for wind power systems. The hysteresis quantizer is used to lower the communication rate. To validate the correctness of the control method, a sufficient reliability criterion is derived to prove the applicability of the AMD event-triggered QSMLFC. Three numerical examples and an IEEE 39-bus system simulation are presented to demonstrate that the reliable AMD event-triggered QSMLFC method can provide satisfactory stability performance for the wind power system under frequency-based deception attacks.
Maria João Forjaz , Carmen Rodriguez-Blazquez , Alba Ayala , Vicente Rodriguez-Rodriguez , Jesús de Pedro-Cuesta , Susana Garcia-Gutierrez , Alexandra Prados-Torres
期刊介绍:
IEEE Transactions on Reliability is a refereed journal for the reliability and allied disciplines including, but not limited to, maintainability, physics of failure, life testing, prognostics, design and manufacture for reliability, reliability for systems of systems, network availability, mission success, warranty, safety, and various measures of effectiveness. Topics eligible for publication range from hardware to software, from materials to systems, from consumer and industrial devices to manufacturing plants, from individual items to networks, from techniques for making things better to ways of predicting and measuring behavior in the field. As an engineering subject that supports new and existing technologies, we constantly expand into new areas of the assurance sciences.