Effects of In2O3 doping on the microstructure and electrical properties of ZnO–V2O5–Nb2O5 varistor ceramics

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Current Applied Physics Pub Date : 2024-06-01 DOI:10.1016/j.cap.2024.05.020
Tapatee Kundu Roy
{"title":"Effects of In2O3 doping on the microstructure and electrical properties of ZnO–V2O5–Nb2O5 varistor ceramics","authors":"Tapatee Kundu Roy","doi":"10.1016/j.cap.2024.05.020","DOIUrl":null,"url":null,"abstract":"<div><p>To understand the effects of In<sub>2</sub>O<sub>3</sub> on the microstructure, grain size dispersion, density and nonlinear electrical characteristics, ZnO–V<sub>2</sub>O<sub>5</sub>–Nb<sub>2</sub>O<sub>5</sub> varistor ceramics with 0.02, 0.05 and 0.1 mol.% In<sub>2</sub>O<sub>3</sub> were fabricated via sintering at 950–975 °C for 1 h. The sintered samples were evaluated by x-ray diffraction, scanning electron microscopy, density measurements and electrical measurements through a voltage source meter. In<sub>2</sub>O<sub>3</sub> addition improves relative density to ≥99 % and acts as an efficient grain growth inhibitor, resulting in a narrower grain dispersion and finer ZnO grains due to the formation of In–V–O intergranular phases. The breakdown potential (<em>E</em><sub><em>1mA</em></sub>) increases sharply to 7.49 ± 0.3 kV/cm (from 1.66 ± 0.1 kV/cm) as a result of grain size reduction to 2.1 ± 0.1 μm (from 3.89 ± 0.2 μm) with In concentration of 0.1 mol.% (from 0.02 mol.%). Doping of In<sub>2</sub>O<sub>3</sub> improves the nonlinear exponent and reduces the leakage current density as a direct consequence of enhanced Schottky barrier height.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"65 ","pages":"Pages 32-40"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924001160","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To understand the effects of In2O3 on the microstructure, grain size dispersion, density and nonlinear electrical characteristics, ZnO–V2O5–Nb2O5 varistor ceramics with 0.02, 0.05 and 0.1 mol.% In2O3 were fabricated via sintering at 950–975 °C for 1 h. The sintered samples were evaluated by x-ray diffraction, scanning electron microscopy, density measurements and electrical measurements through a voltage source meter. In2O3 addition improves relative density to ≥99 % and acts as an efficient grain growth inhibitor, resulting in a narrower grain dispersion and finer ZnO grains due to the formation of In–V–O intergranular phases. The breakdown potential (E1mA) increases sharply to 7.49 ± 0.3 kV/cm (from 1.66 ± 0.1 kV/cm) as a result of grain size reduction to 2.1 ± 0.1 μm (from 3.89 ± 0.2 μm) with In concentration of 0.1 mol.% (from 0.02 mol.%). Doping of In2O3 improves the nonlinear exponent and reduces the leakage current density as a direct consequence of enhanced Schottky barrier height.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂 In2O3 对 ZnO-V2O5-Nb2O5 变阻器陶瓷微观结构和电气性能的影响
为了了解 In2O3 对微观结构、晶粒尺寸分散、密度和非线性电气特性的影响,在 950-975 °C 下烧结 1 小时,制备了含有 0.02、0.05 和 0.1 mol.% In2O3 的 ZnO-V2O5-Nb2O5 变阻器陶瓷。In2O3 的加入将相对密度提高到了 ≥99 %,并成为一种有效的晶粒生长抑制剂,由于 In-V-O 晶间相的形成,晶粒分散更窄,氧化锌晶粒更细。当 In 浓度为 0.1 摩尔/%(原为 0.02 摩尔/%)时,由于晶粒尺寸减小到 2.1 ± 0.1 μm(原为 3.89 ± 0.2 μm),击穿电位(E1mA)急剧增加到 7.49 ± 0.3 kV/cm(原为 1.66 ± 0.1 kV/cm)。掺杂 In2O3 提高了非线性指数,降低了漏电流密度,这是肖特基势垒高度提高的直接结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
期刊最新文献
Editorial Board Synergistic impact of Al2O3 capping layer and deposition temperature for enhancing the ferroelectricity of undoped-HfO2 thin films Improved mobility in InAs nanowire FETs with sulfur-based surface treatment Graphene/WS2/LaVO3 heterojunction for self-powered, high-speed, and broadband photodetectors Oxidation effects on the optical and electrical properties of MoS2 under controlled baking temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1