Graphene/WS2/LaVO3 heterojunction for self-powered, high-speed, and broadband photodetectors

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Current Applied Physics Pub Date : 2024-11-23 DOI:10.1016/j.cap.2024.11.014
Dong Hee Shin , Hosun Lee
{"title":"Graphene/WS2/LaVO3 heterojunction for self-powered, high-speed, and broadband photodetectors","authors":"Dong Hee Shin ,&nbsp;Hosun Lee","doi":"10.1016/j.cap.2024.11.014","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, there has been interest in developing high-performance self-driven photodetectors (PDs) using 2D-based heterostructures due to their unique optoelectronic properties. Here, we demonstrate that vertical-heterostructures based on graphene (Gr) transparent conductive electrodes, n-type 2D WS<sub>2</sub>, and p-type LaVO<sub>3</sub> realize a broadband-responsive PD covering the wavelength range of 300–850 nm. Due to the formation of an electric field at the WS<sub>2</sub>/LaVO<sub>3</sub> interface and the photovoltaic effect, this structure shows a rectifying operation with a maximum detectivity of 2.1 × 10<sup>10</sup> Jones at zero bias. Additionally, it exhibits a fast fall time of 435 μs and a 3 dB bandwidth of 2300 Hz, making it suitable for high-speed self-powered optoelectronic applications. Therefore, the TETA-Gr/WS<sub>2</sub>/LaVO<sub>3</sub> heterojunction is proposed as an excellent candidate for high-performance, self-powered, and broadband PDs.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"70 ","pages":"Pages 69-75"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924002529","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, there has been interest in developing high-performance self-driven photodetectors (PDs) using 2D-based heterostructures due to their unique optoelectronic properties. Here, we demonstrate that vertical-heterostructures based on graphene (Gr) transparent conductive electrodes, n-type 2D WS2, and p-type LaVO3 realize a broadband-responsive PD covering the wavelength range of 300–850 nm. Due to the formation of an electric field at the WS2/LaVO3 interface and the photovoltaic effect, this structure shows a rectifying operation with a maximum detectivity of 2.1 × 1010 Jones at zero bias. Additionally, it exhibits a fast fall time of 435 μs and a 3 dB bandwidth of 2300 Hz, making it suitable for high-speed self-powered optoelectronic applications. Therefore, the TETA-Gr/WS2/LaVO3 heterojunction is proposed as an excellent candidate for high-performance, self-powered, and broadband PDs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于自供电、高速和宽带光电探测器的石墨烯/WS2/LaVO3 异质结
最近,由于二维异质结构具有独特的光电特性,人们开始关注利用二维异质结构开发高性能自驱动光电探测器(PD)。在这里,我们证明了基于石墨烯(Gr)透明导电电极、n 型二维 WS2 和 p 型 LaVO3 的垂直异质结构可实现波长范围为 300-850 nm 的宽带响应型 PD。由于在 WS2/LaVO3 界面形成的电场和光生伏打效应,这种结构显示出整流操作,在零偏压下的最大检测率为 2.1 × 1010 琼斯。此外,它还具有 435 μs 的快速下降时间和 2300 Hz 的 3 dB 带宽,适合高速自供电光电应用。因此,TETA-Gr/WS2/LaVO3 异质结被认为是高性能、自供电和宽带 PD 的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
期刊最新文献
Editorial Board Synergistic impact of Al2O3 capping layer and deposition temperature for enhancing the ferroelectricity of undoped-HfO2 thin films Improved mobility in InAs nanowire FETs with sulfur-based surface treatment Graphene/WS2/LaVO3 heterojunction for self-powered, high-speed, and broadband photodetectors Oxidation effects on the optical and electrical properties of MoS2 under controlled baking temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1