{"title":"Robot base position and spacecraft cabin angle optimization via homogeneous stiffness domain index with nonlinear stiffness characteristics","authors":"Zhiqi Wang, Dong Gao, Kenan Deng, Yong Lu, Shoudong Ma, Jiao Zhao","doi":"10.1016/j.rcim.2024.102793","DOIUrl":null,"url":null,"abstract":"<div><p>The use of mobile robots for machining large components has received considerable research interest for the application of industrial robots in the machinery manufacturing sector. However, the low structural stiffness of industrial robots can result in poor machining quality under the action of cutting forces. Therefore, this paper proposes a simultaneous optimization method the mobile robot base position and cabin angle using homogeneous stiffness domain (HSD) index for large spacecraft cabins. First, a nonlinear joint stiffness model that considers the gravity compensator mechanism is established to describe the stiffness characteristics of heavy-duty robots more accurately. Subsequently, a HSD index is proposed to evaluate the overall stiffness values and stiffness fluctuation for all robot postures in the machining program. An optimization model is then established based on the HSD under the constraints of machining accessibility, joint angle limitation and singularity. The optimal base position and cabin angle are determined simultaneously using the sparrow search algorithm. Finally, simulation and milling experiments are used to demonstrate that the optimization method proposed in this paper can effectively improve the machining quality.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"90 ","pages":"Article 102793"},"PeriodicalIF":9.1000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524000802","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The use of mobile robots for machining large components has received considerable research interest for the application of industrial robots in the machinery manufacturing sector. However, the low structural stiffness of industrial robots can result in poor machining quality under the action of cutting forces. Therefore, this paper proposes a simultaneous optimization method the mobile robot base position and cabin angle using homogeneous stiffness domain (HSD) index for large spacecraft cabins. First, a nonlinear joint stiffness model that considers the gravity compensator mechanism is established to describe the stiffness characteristics of heavy-duty robots more accurately. Subsequently, a HSD index is proposed to evaluate the overall stiffness values and stiffness fluctuation for all robot postures in the machining program. An optimization model is then established based on the HSD under the constraints of machining accessibility, joint angle limitation and singularity. The optimal base position and cabin angle are determined simultaneously using the sparrow search algorithm. Finally, simulation and milling experiments are used to demonstrate that the optimization method proposed in this paper can effectively improve the machining quality.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.