Back-focal plane scanning spectroscopy for investigating the optical dispersion of large-area two-dimensional photonic crystal fabricated by capillary force lithography

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Current Applied Physics Pub Date : 2024-06-08 DOI:10.1016/j.cap.2024.06.001
Changwon Seo , Jae-Eon Shim , Chanseul Kim , Eunji Lee , Gwan Hyun Choi , Pil Jin Yoo , Gi-Ra Yi , Jeongyong Kim , Teun-Teun Kim
{"title":"Back-focal plane scanning spectroscopy for investigating the optical dispersion of large-area two-dimensional photonic crystal fabricated by capillary force lithography","authors":"Changwon Seo ,&nbsp;Jae-Eon Shim ,&nbsp;Chanseul Kim ,&nbsp;Eunji Lee ,&nbsp;Gwan Hyun Choi ,&nbsp;Pil Jin Yoo ,&nbsp;Gi-Ra Yi ,&nbsp;Jeongyong Kim ,&nbsp;Teun-Teun Kim","doi":"10.1016/j.cap.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we introduce our custom-built back-focal plane (BFP) scanning spectroscopy to explore an angle-resolved optical dispersion in two-dimensional (2D) photonic crystal (PhC) constructed with hexagonal lattice of nano-scaled dielectric rods. We fabricated a uniformly large-area photonic crystal measuring 1 cm by 0.5 cm, featuring a polymer-based hexagonal lattice on a gold layer, using capillary force lithography. This precision enables the effective confinement of photonic modes, leading to enhanced optical interactions. We successfully map out the angle-resolved reflectance spectra by directly scanning BFP, revealing the structure's angle dependent optical response and providing insights into its iso-frequency contours. Our approach simplifies the exploration of advanced optical materials, highlighting the role of precise fabrication and measurement techniques in understanding and utilizing the optical properties of structured materials for various technological applications.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"65 ","pages":"Pages 47-52"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924001251","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce our custom-built back-focal plane (BFP) scanning spectroscopy to explore an angle-resolved optical dispersion in two-dimensional (2D) photonic crystal (PhC) constructed with hexagonal lattice of nano-scaled dielectric rods. We fabricated a uniformly large-area photonic crystal measuring 1 cm by 0.5 cm, featuring a polymer-based hexagonal lattice on a gold layer, using capillary force lithography. This precision enables the effective confinement of photonic modes, leading to enhanced optical interactions. We successfully map out the angle-resolved reflectance spectra by directly scanning BFP, revealing the structure's angle dependent optical response and providing insights into its iso-frequency contours. Our approach simplifies the exploration of advanced optical materials, highlighting the role of precise fabrication and measurement techniques in understanding and utilizing the optical properties of structured materials for various technological applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于研究毛细力光刻法制造的大面积二维光子晶体光色散的背焦平面扫描光谱仪
在这篇文章中,我们介绍了定制的后焦平面(BFP)扫描光谱仪,用于探索二维(2D)光子晶体(PhC)中的角度分辨光色散,该晶体由纳米级电介质棒的六边形晶格构成。我们利用毛细力光刻技术制作了一个 1 厘米 x 0.5 厘米的均匀大面积光子晶体,其特点是在金层上形成了基于聚合物的六边形晶格。这种精确度实现了光子模式的有效约束,从而增强了光学相互作用。通过直接扫描 BFP,我们成功绘制出了角度分辨反射光谱图,揭示了该结构与角度相关的光学响应,并深入了解了其等频轮廓。我们的方法简化了对先进光学材料的探索,凸显了精确制造和测量技术在理解和利用结构材料的光学特性实现各种技术应用方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
期刊最新文献
Transient heat-flux method for measuring heat capacity: Examples from Cu and VO2 Permeability modulation of Fe-Ni/nanoparticle (Ni, Zn) soft magnetic composites Editorial Board Effect of cadmium sulphide on poly (ethyl methacrylate) (PEMA) based electrolyte nanocomposite and its application in dye sensitized solar cell (DSSC) Design and fabrication of ultrathin silicon-based strain gauges for piezoresistive pressure sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1