Back-focal plane scanning spectroscopy for investigating the optical dispersion of large-area two-dimensional photonic crystal fabricated by capillary force lithography
Changwon Seo , Jae-Eon Shim , Chanseul Kim , Eunji Lee , Gwan Hyun Choi , Pil Jin Yoo , Gi-Ra Yi , Jeongyong Kim , Teun-Teun Kim
{"title":"Back-focal plane scanning spectroscopy for investigating the optical dispersion of large-area two-dimensional photonic crystal fabricated by capillary force lithography","authors":"Changwon Seo , Jae-Eon Shim , Chanseul Kim , Eunji Lee , Gwan Hyun Choi , Pil Jin Yoo , Gi-Ra Yi , Jeongyong Kim , Teun-Teun Kim","doi":"10.1016/j.cap.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we introduce our custom-built back-focal plane (BFP) scanning spectroscopy to explore an angle-resolved optical dispersion in two-dimensional (2D) photonic crystal (PhC) constructed with hexagonal lattice of nano-scaled dielectric rods. We fabricated a uniformly large-area photonic crystal measuring 1 cm by 0.5 cm, featuring a polymer-based hexagonal lattice on a gold layer, using capillary force lithography. This precision enables the effective confinement of photonic modes, leading to enhanced optical interactions. We successfully map out the angle-resolved reflectance spectra by directly scanning BFP, revealing the structure's angle dependent optical response and providing insights into its iso-frequency contours. Our approach simplifies the exploration of advanced optical materials, highlighting the role of precise fabrication and measurement techniques in understanding and utilizing the optical properties of structured materials for various technological applications.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"65 ","pages":"Pages 47-52"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924001251","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we introduce our custom-built back-focal plane (BFP) scanning spectroscopy to explore an angle-resolved optical dispersion in two-dimensional (2D) photonic crystal (PhC) constructed with hexagonal lattice of nano-scaled dielectric rods. We fabricated a uniformly large-area photonic crystal measuring 1 cm by 0.5 cm, featuring a polymer-based hexagonal lattice on a gold layer, using capillary force lithography. This precision enables the effective confinement of photonic modes, leading to enhanced optical interactions. We successfully map out the angle-resolved reflectance spectra by directly scanning BFP, revealing the structure's angle dependent optical response and providing insights into its iso-frequency contours. Our approach simplifies the exploration of advanced optical materials, highlighting the role of precise fabrication and measurement techniques in understanding and utilizing the optical properties of structured materials for various technological applications.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.