{"title":"Benefits and impact of emergency training in a VR environment","authors":"Sofia Garcia Fracaro , Yusra Tehreem , Ryo Toyoda , Timothy Gallagher , Jarka Glassey , Kristel Bernaerts , Michael Wilk","doi":"10.1016/j.ece.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses the critical need for realistic emergency training in industries where non-stationary conditions can quickly escalate into accidents or incidents. Real-life training is often impractical due to safety concerns and cost constraints. Consequently, incorporating immersive technologies into training curricula becomes crucial. This research explores participants' self-reflection on safety readiness during virtual reality (VR) emergency training and investigates the impact of interactive versus passive exposure to emergency situations in VR.</p><p>Three distinct exposure methods were developed, varying in the degree of participant involvement. Surprisingly, no statistically significant differences were found among the groups, indicating a positive perception of VR emergency training regardless of the exposure method. Participants valued the opportunity to safely make mistakes, witness consequences, and repeat procedures in VR. They believed such training enhanced their real-life emergency responses by fostering calmness, quick thinking, and prudent reactions.</p><p>However, some participants expressed skepticism, suggesting that VR training might not accurately simulate real-life stress conditions. Future research should explore the impact of photorealistic VR experiences on operators' perceptions and assess the benefits of additional efforts in VR development for emergency training.</p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"48 ","pages":"Pages 63-72"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772824000125","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the critical need for realistic emergency training in industries where non-stationary conditions can quickly escalate into accidents or incidents. Real-life training is often impractical due to safety concerns and cost constraints. Consequently, incorporating immersive technologies into training curricula becomes crucial. This research explores participants' self-reflection on safety readiness during virtual reality (VR) emergency training and investigates the impact of interactive versus passive exposure to emergency situations in VR.
Three distinct exposure methods were developed, varying in the degree of participant involvement. Surprisingly, no statistically significant differences were found among the groups, indicating a positive perception of VR emergency training regardless of the exposure method. Participants valued the opportunity to safely make mistakes, witness consequences, and repeat procedures in VR. They believed such training enhanced their real-life emergency responses by fostering calmness, quick thinking, and prudent reactions.
However, some participants expressed skepticism, suggesting that VR training might not accurately simulate real-life stress conditions. Future research should explore the impact of photorealistic VR experiences on operators' perceptions and assess the benefits of additional efforts in VR development for emergency training.
期刊介绍:
Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning