Je-Un Jeong, Jothi Prakash Chakrapani Gunarasan, Jeong-Won Lee
{"title":"Facile fabrication of microstructured superhydrophilic and superhydrophobic STS316L","authors":"Je-Un Jeong, Jothi Prakash Chakrapani Gunarasan, Jeong-Won Lee","doi":"10.1016/j.cap.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>The enhancement of the wettability characteristics in stainless steel holds substantial significance for the application of inhibitor coatings. Investigating a s surface design along with assessing the influences of roughness, surface topography, and chemical heterogeneity on wettability has been a primary focus. In this context, the manipulation of stainless steel surface properties has gained significant attention, specifically for the purpose of fine-tuning wettability. Despite this, uncomplicated surface treatment techniques for stainless steels remain insufficiently established. This study presents a simple etching and oxidation approach for tuning the wettability of stainless steel (STS316L). Through etching and oxidation of STS316L, a superhydrophilic wetting state was achieved (contact angle ∼ 2°). Subsequent application of a monolayer coating led to the reversal of wettability from superhydrophilic to superhydrophobic (contact angle ∼ 168°). Additionally, the proposed methodology for STS316L surface treatment opens up broad expansion possibilities for the applications of superhydrophobic surfaces.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"65 ","pages":"Pages 60-67"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924001305","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The enhancement of the wettability characteristics in stainless steel holds substantial significance for the application of inhibitor coatings. Investigating a s surface design along with assessing the influences of roughness, surface topography, and chemical heterogeneity on wettability has been a primary focus. In this context, the manipulation of stainless steel surface properties has gained significant attention, specifically for the purpose of fine-tuning wettability. Despite this, uncomplicated surface treatment techniques for stainless steels remain insufficiently established. This study presents a simple etching and oxidation approach for tuning the wettability of stainless steel (STS316L). Through etching and oxidation of STS316L, a superhydrophilic wetting state was achieved (contact angle ∼ 2°). Subsequent application of a monolayer coating led to the reversal of wettability from superhydrophilic to superhydrophobic (contact angle ∼ 168°). Additionally, the proposed methodology for STS316L surface treatment opens up broad expansion possibilities for the applications of superhydrophobic surfaces.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.