{"title":"Potential of TiO2 as a capping layer for industrial c-Si PERC solar cells","authors":"Aamenah Siddiqui, Muhammad Usman, Anders Hallén","doi":"10.1007/s10825-024-02187-0","DOIUrl":null,"url":null,"abstract":"<div><p>Titanium dioxide (TiO<sub>2</sub>) has gained popularity especially in photovoltaic applications, owing to its transparency in the visible region, and scratch resistance. In this work, the potential of TiO<sub>2</sub> as a capping layer for c-Si p-type SiN<sub><i>x</i></sub> passivated emitter and rear contact (PERC) solar cells is studied through extensive optical and device simulations. The bifacial PERC solar cell model used in this study is calibrated with an experimental device having an efficiency of 22.19%. Device simulation results show that TiO<sub>2</sub> deposited by the mesoporous technique outperforms atmospheric pressure chemical vapor deposition (APCVD) and atomic layer deposition (ALD)-based TiO<sub>2</sub> layers when capped over SiN<sub><i>x</i></sub> (<i>n</i> = 2.1) passivated solar cells. Furthermore, it is shown that the efficiency of SiN<sub><i>x</i></sub> (<i>n</i> = 2.1)/TiO<sub>2</sub> based solar cells is maintained, even when the TiO<sub>2</sub> layer thickness varies from 75 to 95 nm. To enhance the efficiency further, the type of SiN<sub><i>x</i></sub> layer (characterized by the <i>n</i> value), and the thicknesses of SiN<sub><i>x</i></sub> and TiO<sub>2</sub> layers are optimized simultaneously to find the best combination of these parameters. The best front side solar cell efficiency of 22.43%, is obtained when a stack of SiN<sub><i>x</i></sub>(<i>n</i> = 1.99)/TiO<sub>2</sub> (<i>t</i> = 58/76 nm) is used. Similarly, a rear side efficiency of 16.59% is achieved when the rear side Al<sub>2</sub>O<sub>3</sub>/SiN<sub><i>x</i></sub> stack is capped with mesoporous TiO<sub>2</sub>. These efficiencies are 0.24 and 1.25% higher, respectively, when compared to the original SiN<sub><i>x</i></sub> passivated PERC solar cell, demonstrating the prospective of using TiO<sub>2</sub> in encapsulant-free commercial photovoltaic applications.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 4","pages":"874 - 883"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02187-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Titanium dioxide (TiO2) has gained popularity especially in photovoltaic applications, owing to its transparency in the visible region, and scratch resistance. In this work, the potential of TiO2 as a capping layer for c-Si p-type SiNx passivated emitter and rear contact (PERC) solar cells is studied through extensive optical and device simulations. The bifacial PERC solar cell model used in this study is calibrated with an experimental device having an efficiency of 22.19%. Device simulation results show that TiO2 deposited by the mesoporous technique outperforms atmospheric pressure chemical vapor deposition (APCVD) and atomic layer deposition (ALD)-based TiO2 layers when capped over SiNx (n = 2.1) passivated solar cells. Furthermore, it is shown that the efficiency of SiNx (n = 2.1)/TiO2 based solar cells is maintained, even when the TiO2 layer thickness varies from 75 to 95 nm. To enhance the efficiency further, the type of SiNx layer (characterized by the n value), and the thicknesses of SiNx and TiO2 layers are optimized simultaneously to find the best combination of these parameters. The best front side solar cell efficiency of 22.43%, is obtained when a stack of SiNx(n = 1.99)/TiO2 (t = 58/76 nm) is used. Similarly, a rear side efficiency of 16.59% is achieved when the rear side Al2O3/SiNx stack is capped with mesoporous TiO2. These efficiencies are 0.24 and 1.25% higher, respectively, when compared to the original SiNx passivated PERC solar cell, demonstrating the prospective of using TiO2 in encapsulant-free commercial photovoltaic applications.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.