Engineering the structural, electronic, and optical properties of the novel monolayer photoelectric semiconductor C2/m-SnX (X = P, as) via strain: a first-principles study

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Computational Electronics Pub Date : 2025-03-18 DOI:10.1007/s10825-025-02302-9
Fen Li, Xiong-Fei Zhang, Ju-Qi Ruan, Yi-Fen Zhao, Kai Xiong, Yao He, Qing-Yuan Chen
{"title":"Engineering the structural, electronic, and optical properties of the novel monolayer photoelectric semiconductor C2/m-SnX (X = P, as) via strain: a first-principles study","authors":"Fen Li,&nbsp;Xiong-Fei Zhang,&nbsp;Ju-Qi Ruan,&nbsp;Yi-Fen Zhao,&nbsp;Kai Xiong,&nbsp;Yao He,&nbsp;Qing-Yuan Chen","doi":"10.1007/s10825-025-02302-9","DOIUrl":null,"url":null,"abstract":"<div><p>Driven by their outstanding optoelectronic properties, two-dimensional (2D) materials have attracted significant attention in solar cells, LEDs, and other optoelectronic fields. Besides, the strain effect has served as a powerful approach to enhance the optoelectronic performance of 2D materials. This study employs first-principles calculations to investigate the tunable optoelectronic properties of monolayer <i>C</i>2/<i>m</i>-SnX (X = P, As) materials under uniaxial/biaxial strains ranging from -10% to 10%. The results demonstrate that under uniaxial/biaxial strains ranging from -10% to 10%, the structure of <i>C</i>2/<i>m</i>-SnX (X = P, As) maintains good stability. Their electronic and optical properties can uphold semiconductive characteristics unchanged across the entire strain conditions. Under different strains, their mechanical and optical properties are anisotropic. All of the outcomes above attest to their favorable flexibility. In addition, their mechanical, electronic, and optical properties display different and regular patterns of change under the modulation of various strains. In our opinion, this study not only validates the potential of <i>C</i>2/<i>m</i>-SnX as a strain-tunable flexible semiconductor but also furnishes a theoretical basis and directive for the future application in practice, where the application of strain can enable targeted regulation of its mechanical and optoelectronics properties, thus transforming and broadening its performance manifestations.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-025-02302-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Driven by their outstanding optoelectronic properties, two-dimensional (2D) materials have attracted significant attention in solar cells, LEDs, and other optoelectronic fields. Besides, the strain effect has served as a powerful approach to enhance the optoelectronic performance of 2D materials. This study employs first-principles calculations to investigate the tunable optoelectronic properties of monolayer C2/m-SnX (X = P, As) materials under uniaxial/biaxial strains ranging from -10% to 10%. The results demonstrate that under uniaxial/biaxial strains ranging from -10% to 10%, the structure of C2/m-SnX (X = P, As) maintains good stability. Their electronic and optical properties can uphold semiconductive characteristics unchanged across the entire strain conditions. Under different strains, their mechanical and optical properties are anisotropic. All of the outcomes above attest to their favorable flexibility. In addition, their mechanical, electronic, and optical properties display different and regular patterns of change under the modulation of various strains. In our opinion, this study not only validates the potential of C2/m-SnX as a strain-tunable flexible semiconductor but also furnishes a theoretical basis and directive for the future application in practice, where the application of strain can enable targeted regulation of its mechanical and optoelectronics properties, thus transforming and broadening its performance manifestations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维(2D)材料具有出色的光电特性,因此在太阳能电池、发光二极管和其他光电领域备受关注。此外,应变效应也是提高二维材料光电性能的有力方法。本研究利用第一性原理计算研究了单层 C2/m-SnX (X = P, As) 材料在 -10% 到 10% 的单轴/双轴应变下的可调光电特性。结果表明,在-10%至10%的单轴/双轴应变下,C2/m-SnX(X = P,As)结构保持良好的稳定性。它们的电子和光学特性在整个应变条件下都能保持半导体特性不变。在不同的应变条件下,它们的机械和光学特性是各向异性的。所有上述结果都证明了它们具有良好的柔韧性。此外,在各种应变的调制下,它们的机械、电子和光学特性也呈现出不同的规律性变化。我们认为,这项研究不仅验证了 C2/m-SnX 作为应变可调柔性半导体的潜力,还为未来的实际应用提供了理论依据和指导,应用应变可以有针对性地调节其机械和光电特性,从而改变和拓宽其性能表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
期刊最新文献
Design and modeling of multi-color absorber based on periodic van der Waals heterostructures including TMDCs Engineering the structural, electronic, and optical properties of the novel monolayer photoelectric semiconductor C2/m-SnX (X = P, as) via strain: a first-principles study Design and analysis of novel D–π–A configuration dyes for dye-sensitized solar cells: a density functional theory study Modelling and simulation of TSV considering void and leakage defects Design and FEM analysis of split electrode SAW sensor for volatile organic compound gases based on CNT/MoS2 composite for biomarker applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1