{"title":"Design and modeling of multi-color absorber based on periodic van der Waals heterostructures including TMDCs","authors":"Hannaneh Dortaj, Samiye Matloub","doi":"10.1007/s10825-025-02304-7","DOIUrl":null,"url":null,"abstract":"<div><p>Absorbers based on two-dimensional transition metal dichalcogenide (TMDC) heterostructures with direct band gap have recently attracted great research attention in optoelectronic applications. In this study, we design a multi-color absorber using a multilayer periodic arrangement of van der Waals heterostructures, including different TMDC thin layers (MoSe<sub>2</sub>, MoS<sub>2</sub>, WSe<sub>2</sub>, and WS<sub>2</sub>) on SiO<sub>2</sub> substrate. This newly emerging platform based on different compositions of TMDCs has been investigated to improve light absorption in the visible range. Multi-color detection can be achieved by combining distinct types of TMDCs with different layers. For instance, for two-color absorption, 3-layer-MoS<sub>2</sub> and 1-layer-WSe<sub>2</sub> have been located on the SiO<sub>2</sub> substrate alternatively to form a periodic heterostructure. In this case, the absorption spectrum illustrates two narrow peaks at 520 nm (green) and 700 nm (red) wavelengths. For three-color absorption, 3-layer-WSe<sub>2</sub> and 1-layer-WS<sub>2</sub> have been deposited on SiO<sub>2</sub> substrate alternatively, and the absorption spectrum displays three narrow peaks at 520 nm (green), 610 nm (orange), and 710 nm (red) wavelengths. Effects of the number of periods and the number of TMDC layers on the absorption spectrum have been investigated. As a result, the utilization of the periodic form of multilayer TMDCs demonstrates a high absorption peak of approximately 40% for distinct wavelengths within the visible range. This property can be employed in various optoelectronic devices and visible light communication.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-025-02304-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Absorbers based on two-dimensional transition metal dichalcogenide (TMDC) heterostructures with direct band gap have recently attracted great research attention in optoelectronic applications. In this study, we design a multi-color absorber using a multilayer periodic arrangement of van der Waals heterostructures, including different TMDC thin layers (MoSe2, MoS2, WSe2, and WS2) on SiO2 substrate. This newly emerging platform based on different compositions of TMDCs has been investigated to improve light absorption in the visible range. Multi-color detection can be achieved by combining distinct types of TMDCs with different layers. For instance, for two-color absorption, 3-layer-MoS2 and 1-layer-WSe2 have been located on the SiO2 substrate alternatively to form a periodic heterostructure. In this case, the absorption spectrum illustrates two narrow peaks at 520 nm (green) and 700 nm (red) wavelengths. For three-color absorption, 3-layer-WSe2 and 1-layer-WS2 have been deposited on SiO2 substrate alternatively, and the absorption spectrum displays three narrow peaks at 520 nm (green), 610 nm (orange), and 710 nm (red) wavelengths. Effects of the number of periods and the number of TMDC layers on the absorption spectrum have been investigated. As a result, the utilization of the periodic form of multilayer TMDCs demonstrates a high absorption peak of approximately 40% for distinct wavelengths within the visible range. This property can be employed in various optoelectronic devices and visible light communication.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.