Design and modeling of multi-color absorber based on periodic van der Waals heterostructures including TMDCs

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Computational Electronics Pub Date : 2025-03-20 DOI:10.1007/s10825-025-02304-7
Hannaneh Dortaj, Samiye Matloub
{"title":"Design and modeling of multi-color absorber based on periodic van der Waals heterostructures including TMDCs","authors":"Hannaneh Dortaj,&nbsp;Samiye Matloub","doi":"10.1007/s10825-025-02304-7","DOIUrl":null,"url":null,"abstract":"<div><p>Absorbers based on two-dimensional transition metal dichalcogenide (TMDC) heterostructures with direct band gap have recently attracted great research attention in optoelectronic applications. In this study, we design a multi-color absorber using a multilayer periodic arrangement of van der Waals heterostructures, including different TMDC thin layers (MoSe<sub>2</sub>, MoS<sub>2</sub>, WSe<sub>2</sub>, and WS<sub>2</sub>) on SiO<sub>2</sub> substrate. This newly emerging platform based on different compositions of TMDCs has been investigated to improve light absorption in the visible range. Multi-color detection can be achieved by combining distinct types of TMDCs with different layers. For instance, for two-color absorption, 3-layer-MoS<sub>2</sub> and 1-layer-WSe<sub>2</sub> have been located on the SiO<sub>2</sub> substrate alternatively to form a periodic heterostructure. In this case, the absorption spectrum illustrates two narrow peaks at 520 nm (green) and 700 nm (red) wavelengths. For three-color absorption, 3-layer-WSe<sub>2</sub> and 1-layer-WS<sub>2</sub> have been deposited on SiO<sub>2</sub> substrate alternatively, and the absorption spectrum displays three narrow peaks at 520 nm (green), 610 nm (orange), and 710 nm (red) wavelengths. Effects of the number of periods and the number of TMDC layers on the absorption spectrum have been investigated. As a result, the utilization of the periodic form of multilayer TMDCs demonstrates a high absorption peak of approximately 40% for distinct wavelengths within the visible range. This property can be employed in various optoelectronic devices and visible light communication.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-025-02304-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Absorbers based on two-dimensional transition metal dichalcogenide (TMDC) heterostructures with direct band gap have recently attracted great research attention in optoelectronic applications. In this study, we design a multi-color absorber using a multilayer periodic arrangement of van der Waals heterostructures, including different TMDC thin layers (MoSe2, MoS2, WSe2, and WS2) on SiO2 substrate. This newly emerging platform based on different compositions of TMDCs has been investigated to improve light absorption in the visible range. Multi-color detection can be achieved by combining distinct types of TMDCs with different layers. For instance, for two-color absorption, 3-layer-MoS2 and 1-layer-WSe2 have been located on the SiO2 substrate alternatively to form a periodic heterostructure. In this case, the absorption spectrum illustrates two narrow peaks at 520 nm (green) and 700 nm (red) wavelengths. For three-color absorption, 3-layer-WSe2 and 1-layer-WS2 have been deposited on SiO2 substrate alternatively, and the absorption spectrum displays three narrow peaks at 520 nm (green), 610 nm (orange), and 710 nm (red) wavelengths. Effects of the number of periods and the number of TMDC layers on the absorption spectrum have been investigated. As a result, the utilization of the periodic form of multilayer TMDCs demonstrates a high absorption peak of approximately 40% for distinct wavelengths within the visible range. This property can be employed in various optoelectronic devices and visible light communication.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
期刊最新文献
Design and modeling of multi-color absorber based on periodic van der Waals heterostructures including TMDCs Engineering the structural, electronic, and optical properties of the novel monolayer photoelectric semiconductor C2/m-SnX (X = P, as) via strain: a first-principles study Design and analysis of novel D–π–A configuration dyes for dye-sensitized solar cells: a density functional theory study Modelling and simulation of TSV considering void and leakage defects Design and FEM analysis of split electrode SAW sensor for volatile organic compound gases based on CNT/MoS2 composite for biomarker applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1