Beyond conventional imaging: Advancements in MRI for glioma malignancy prediction and molecular profiling

IF 2.1 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic resonance imaging Pub Date : 2024-06-22 DOI:10.1016/j.mri.2024.06.004
Paulina Śledzińska-Bebyn , Jacek Furtak , Marek Bebyn , Zbigniew Serafin
{"title":"Beyond conventional imaging: Advancements in MRI for glioma malignancy prediction and molecular profiling","authors":"Paulina Śledzińska-Bebyn ,&nbsp;Jacek Furtak ,&nbsp;Marek Bebyn ,&nbsp;Zbigniew Serafin","doi":"10.1016/j.mri.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>This review examines the advancements in magnetic resonance imaging (MRI) techniques and their pivotal role in diagnosing and managing gliomas, the most prevalent primary brain tumors. The paper underscores the importance of integrating modern MRI modalities, such as diffusion-weighted imaging and perfusion MRI, which are essential for assessing glioma malignancy and predicting tumor behavior. Special attention is given to the 2021 WHO Classification of Tumors of the Central Nervous System, emphasizing the integration of molecular diagnostics in glioma classification, significantly impacting treatment decisions. The review also explores radiogenomics, which correlates imaging features with molecular markers to tailor personalized treatment strategies. Despite technological progress, MRI protocol standardization and result interpretation challenges persist, affecting diagnostic consistency across different settings. Furthermore, the review addresses MRI's capacity to distinguish between tumor recurrence and pseudoprogression, which is vital for patient management. The necessity for greater standardization and collaborative research to harness MRI's full potential in glioma diagnosis and personalized therapy is highlighted, advocating for an enhanced understanding of glioma biology and more effective treatment approaches.</p></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"112 ","pages":"Pages 63-81"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X24001759","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This review examines the advancements in magnetic resonance imaging (MRI) techniques and their pivotal role in diagnosing and managing gliomas, the most prevalent primary brain tumors. The paper underscores the importance of integrating modern MRI modalities, such as diffusion-weighted imaging and perfusion MRI, which are essential for assessing glioma malignancy and predicting tumor behavior. Special attention is given to the 2021 WHO Classification of Tumors of the Central Nervous System, emphasizing the integration of molecular diagnostics in glioma classification, significantly impacting treatment decisions. The review also explores radiogenomics, which correlates imaging features with molecular markers to tailor personalized treatment strategies. Despite technological progress, MRI protocol standardization and result interpretation challenges persist, affecting diagnostic consistency across different settings. Furthermore, the review addresses MRI's capacity to distinguish between tumor recurrence and pseudoprogression, which is vital for patient management. The necessity for greater standardization and collaborative research to harness MRI's full potential in glioma diagnosis and personalized therapy is highlighted, advocating for an enhanced understanding of glioma biology and more effective treatment approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越传统成像:磁共振成像在胶质瘤恶性程度预测和分子谱分析方面的进展。
这篇综述探讨了磁共振成像(MRI)技术的发展及其在诊断和管理胶质瘤(最常见的原发性脑肿瘤)中的关键作用。论文强调了整合现代磁共振成像模式的重要性,如弥散加权成像和灌注磁共振成像,它们对于评估胶质瘤恶性程度和预测肿瘤行为至关重要。书中特别关注了 2021 年世界卫生组织《中枢神经系统肿瘤分类》,强调了将分子诊断纳入胶质瘤分类的重要性,这将对治疗决策产生重大影响。综述还探讨了放射基因组学,它将成像特征与分子标记物相关联,以定制个性化治疗策略。尽管技术不断进步,但核磁共振成像方案标准化和结果判读方面的挑战依然存在,影响了不同环境下诊断的一致性。此外,综述还讨论了磁共振成像区分肿瘤复发和假性进展的能力,这对患者管理至关重要。综述强调了加强标准化和合作研究的必要性,以充分发挥磁共振成像在胶质瘤诊断和个性化治疗中的潜力,倡导加强对胶质瘤生物学和更有效治疗方法的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Magnetic resonance imaging
Magnetic resonance imaging 医学-核医学
CiteScore
4.70
自引率
4.00%
发文量
194
审稿时长
83 days
期刊介绍: Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.
期刊最新文献
Preclinical validation of a metasurface-inspired conformal elliptical-cylinder resonator for wrist MRI at 1.5 T. P53 status combined with MRI findings for prognosis prediction of single hepatocellular carcinoma. Predicting progression in triple-negative breast cancer patients undergoing neoadjuvant chemotherapy: Insights from peritumoral radiomics. Deep learning radiomics nomograms predict Isocitrate dehydrogenase (IDH) genotypes in brain glioma: A multicenter study. Reliability of post-contrast deep learning-based highly accelerated cardiac cine MRI for the assessment of ventricular function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1