{"title":"Machining quality prediction of multi-feature parts using integrated multi-source domain dynamic adaptive transfer learning","authors":"Pei Wang , Jingshuai Qi , Xun Xu , Sheng Yang","doi":"10.1016/j.rcim.2024.102815","DOIUrl":null,"url":null,"abstract":"<div><p>Machining quality prediction of multi-feature parts has been a challenging problem because of small dataset and inconsistent quality data distribution with respect to each machining feature. Transfer learning that leverages knowledge of one task and can be repurposed on another task seems a good solution for this purpose. However, traditional transfer learning typically has a single source domain and a target domain, which limits its applications in multi-source scenarios (e.g., multi-feature). To solve this issue, this paper proposes a novel integrated multi-source domain dynamic adaptive transfer learning (IMD-DATL) framework for machining quality prediction of multi-feature part machining systems. Specifically, a domain-sample similarity double matching multi-source domain integration method is designed to construct the integration knowledge transfer from multiple source domains to the target domain. A residual feature extraction network based on sample entropy-dynamic channel double-layer attention structure and a fine-grained transferable feature attention module are designed. These three attentions are used to improve the feature learning ability and the adaptation level to the predicted object in the three dimensions of sample, channel and data feature. Finally, multiple sets of comparative experiments in thin-walled part machining systems confirm the effectiveness and superiority of the proposed method for cross-domain quality prediction. Compared with other traditional transfer learning methods, the MAE, RMSE and Score on average of this method are increased by 5.47 %, 4.59 % and 4.84 %, respectively, compared with other multi-source domain adaptation methods, the MAE, RMSE and Score on average of this method are increased by 7.13 %, 7.37 % and 6.52 %, respectively.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"90 ","pages":"Article 102815"},"PeriodicalIF":9.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0736584524001029/pdfft?md5=fa70f9ca61d04cad04c7b99922f48aa1&pid=1-s2.0-S0736584524001029-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524001029","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Machining quality prediction of multi-feature parts has been a challenging problem because of small dataset and inconsistent quality data distribution with respect to each machining feature. Transfer learning that leverages knowledge of one task and can be repurposed on another task seems a good solution for this purpose. However, traditional transfer learning typically has a single source domain and a target domain, which limits its applications in multi-source scenarios (e.g., multi-feature). To solve this issue, this paper proposes a novel integrated multi-source domain dynamic adaptive transfer learning (IMD-DATL) framework for machining quality prediction of multi-feature part machining systems. Specifically, a domain-sample similarity double matching multi-source domain integration method is designed to construct the integration knowledge transfer from multiple source domains to the target domain. A residual feature extraction network based on sample entropy-dynamic channel double-layer attention structure and a fine-grained transferable feature attention module are designed. These three attentions are used to improve the feature learning ability and the adaptation level to the predicted object in the three dimensions of sample, channel and data feature. Finally, multiple sets of comparative experiments in thin-walled part machining systems confirm the effectiveness and superiority of the proposed method for cross-domain quality prediction. Compared with other traditional transfer learning methods, the MAE, RMSE and Score on average of this method are increased by 5.47 %, 4.59 % and 4.84 %, respectively, compared with other multi-source domain adaptation methods, the MAE, RMSE and Score on average of this method are increased by 7.13 %, 7.37 % and 6.52 %, respectively.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.