Inorganic p-Type Tellurium-Based Synaptic Transistors: Complementary Synaptic Pairs with n-Type Devices for Energy-Efficient Operation

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-07-01 DOI:10.1021/acsaelm.4c01027
Seung Min Lee, Ji-Min Park, Suhyeon Ahn, Seong Cheol Jang, Hyungjin Kim, Hyun-Suk Kim
{"title":"Inorganic p-Type Tellurium-Based Synaptic Transistors: Complementary Synaptic Pairs with n-Type Devices for Energy-Efficient Operation","authors":"Seung Min Lee, Ji-Min Park, Suhyeon Ahn, Seong Cheol Jang, Hyungjin Kim, Hyun-Suk Kim","doi":"10.1021/acsaelm.4c01027","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing is a rapidly emerging technology that can overcome the limitations of von Neumann-type architecture-based computing systems, offering the potential for implementing next-generation computing architectures. Here, we propose a p-type three-terminal synaptic device that successfully mimics the function of biological synapses. The proposed tellurium (Te) synaptic transistors incorporating SiO<sub>2</sub> or Al<sub>2</sub>O<sub>3</sub> gate dielectric layers modulate the synaptic weight─that is, the channel conductance─essential for realizing synaptic characteristics. Synaptic devices with optimal Al<sub>2</sub>O<sub>3</sub> layers exhibit large hysteresis properties that efficiently induce conductance modulation, demonstrating low power consumption, good linearity, and short-/long-term plasticity. Furthermore, the proposed optimal Te synaptic transistor achieved a high recognition accuracy of 93.8%. These findings suggest that Te-based synaptic devices fabricated utilizing thin-film processes could enhance the efficiency of future neuromorphic computing systems.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaelm.4c01027","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic computing is a rapidly emerging technology that can overcome the limitations of von Neumann-type architecture-based computing systems, offering the potential for implementing next-generation computing architectures. Here, we propose a p-type three-terminal synaptic device that successfully mimics the function of biological synapses. The proposed tellurium (Te) synaptic transistors incorporating SiO2 or Al2O3 gate dielectric layers modulate the synaptic weight─that is, the channel conductance─essential for realizing synaptic characteristics. Synaptic devices with optimal Al2O3 layers exhibit large hysteresis properties that efficiently induce conductance modulation, demonstrating low power consumption, good linearity, and short-/long-term plasticity. Furthermore, the proposed optimal Te synaptic transistor achieved a high recognition accuracy of 93.8%. These findings suggest that Te-based synaptic devices fabricated utilizing thin-film processes could enhance the efficiency of future neuromorphic computing systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无机 p 型碲基突触晶体管:与 n 型器件互补突触对,实现高能效运行
神经形态计算是一项迅速崛起的技术,它可以克服基于冯-诺依曼架构的计算系统的局限性,为实现下一代计算架构提供了可能。在这里,我们提出了一种能成功模拟生物突触功能的 p 型三端突触器件。所提出的碲 (Te) 突触晶体管结合了二氧化硅或氧化铝栅极电介质层,可调节突触重量(即沟道电导),这对实现突触特性至关重要。具有最佳 Al2O3 层的突触器件表现出较大的滞后特性,能有效地诱导电导调制,具有功耗低、线性度好以及短期/长期可塑性强等特点。此外,所提出的最佳 Te 突触晶体管的识别准确率高达 93.8%。这些发现表明,利用薄膜工艺制造的基于 Te 的突触器件可以提高未来神经形态计算系统的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Intrinsic Thermomechanical Properties of Freestanding TEOS-SiO2 Thin Films Depending on Thickness Sea Urchin-Like NiO-CoO Heterostructure as High-Energy Supercapattery Electrode: Laboratory Prototype to Field Application of Pouch-type Device Recent Studies on Solid–Liquid Contact Electrification Piezoelectric and Triboelectric Contributions by Aromatic Hyperbranched Polyesters of Second-Generation/PVDF Nanofiber-Based Nanogenerators for Energy Harvesting and Wearable Electronics Fingerprint-Mimicking, ZIF-67 Decorated, Triboelectric Nanogenerator for IoT Cloud-Supported Self-Powered Smart Glove for Paralyzed Patient Care
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1