Simultaneous Measurement of Thermal Conductivity and Volumetric Heat Capacity of Thermal Interface Materials Using Thermoreflectance

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-27 DOI:10.1021/acsaelm.4c00691
Zeina Abdallah, James W. Pomeroy, Nicolas Blasakis, Athanasios Baltopoulos, Martin Kuball
{"title":"Simultaneous Measurement of Thermal Conductivity and Volumetric Heat Capacity of Thermal Interface Materials Using Thermoreflectance","authors":"Zeina Abdallah, James W. Pomeroy, Nicolas Blasakis, Athanasios Baltopoulos, Martin Kuball","doi":"10.1021/acsaelm.4c00691","DOIUrl":null,"url":null,"abstract":"Thermal interface materials are crucial to minimize the thermal resistance between a semiconductor device and a heat sink, especially for high-power electronic devices, which are susceptible to self-heating-induced failures. The effectiveness of these interface materials depends on their low thermal contact resistance coupled with high thermal conductivity. Various characterization techniques are used to determine the thermal properties of the thermal interface materials. However, their bulk or free-standing thermal properties are typically assessed rather than their thermal performance when applied as a thin layer in real application. In this study, we introduce a low-frequency range frequency domain thermoreflectance method that can measure the effective thermal conductivity and volumetric heat capacity of thermal interface materials simultaneously in situ, illustrated on silver-filled thermal interface material samples, offering a distinct advantage over traditional techniques such as ASTM D5470. Monte Carlo fitting is used to quantify the thermal conductivities and heat capacities and their uncertainties, which are compared to a more efficient least-squares method.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaelm.4c00691","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal interface materials are crucial to minimize the thermal resistance between a semiconductor device and a heat sink, especially for high-power electronic devices, which are susceptible to self-heating-induced failures. The effectiveness of these interface materials depends on their low thermal contact resistance coupled with high thermal conductivity. Various characterization techniques are used to determine the thermal properties of the thermal interface materials. However, their bulk or free-standing thermal properties are typically assessed rather than their thermal performance when applied as a thin layer in real application. In this study, we introduce a low-frequency range frequency domain thermoreflectance method that can measure the effective thermal conductivity and volumetric heat capacity of thermal interface materials simultaneously in situ, illustrated on silver-filled thermal interface material samples, offering a distinct advantage over traditional techniques such as ASTM D5470. Monte Carlo fitting is used to quantify the thermal conductivities and heat capacities and their uncertainties, which are compared to a more efficient least-squares method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用热反射同时测量热界面材料的热导率和体积热容
热界面材料对于最大限度地降低半导体器件与散热器之间的热阻至关重要,尤其是对于容易因自加热而导致故障的大功率电子器件而言。这些界面材料的有效性取决于其低热接触电阻和高热传导率。各种表征技术被用于确定热界面材料的热性能。然而,我们通常评估的是它们的整体或独立热性能,而不是它们在实际应用中作为薄层时的热性能。在本研究中,我们介绍了一种低频范围的频域热反射方法,该方法可同时原位测量热界面材料的有效热导率和体积热容,并以银填充热界面材料样品为例进行说明,与 ASTM D5470 等传统技术相比具有明显优势。蒙特卡罗拟合用于量化热导率和热容量及其不确定性,并与更有效的最小二乘法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Intrinsic Thermomechanical Properties of Freestanding TEOS-SiO2 Thin Films Depending on Thickness Sea Urchin-Like NiO-CoO Heterostructure as High-Energy Supercapattery Electrode: Laboratory Prototype to Field Application of Pouch-type Device Recent Studies on Solid–Liquid Contact Electrification Piezoelectric and Triboelectric Contributions by Aromatic Hyperbranched Polyesters of Second-Generation/PVDF Nanofiber-Based Nanogenerators for Energy Harvesting and Wearable Electronics Fingerprint-Mimicking, ZIF-67 Decorated, Triboelectric Nanogenerator for IoT Cloud-Supported Self-Powered Smart Glove for Paralyzed Patient Care
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1