Yasir Abbas Shah, Saurabh Bhatia, Ahmed Al-Harrasi, Fatih Oz, Mujahid Hassan Khan, Swarup Roy, Tuba Esatbeyoglu, Anubhav Pratap-Singh
{"title":"Thermal Properties of Biopolymer Films: Insights for Sustainable Food Packaging Applications","authors":"Yasir Abbas Shah, Saurabh Bhatia, Ahmed Al-Harrasi, Fatih Oz, Mujahid Hassan Khan, Swarup Roy, Tuba Esatbeyoglu, Anubhav Pratap-Singh","doi":"10.1007/s12393-024-09380-8","DOIUrl":null,"url":null,"abstract":"<p>Poor thermal stability of packaging materials represents a significant obstacle impeding their applications as alternatives to non-biodegradable plastics in the food packaging sector. The thermal stability of biopolymeric films is essential for upholding their structural integrity and preventing degradation at different temperatures during processing, transportation, and storage, thereby safeguarding the quality and safety of packaged food items. A deeper understanding of the interplay between material composition, processing conditions, and thermal behavior will foster the development of stable edible films capable of withstanding elevated temperatures while maintaining their structural integrity and functional attributes. This review provides an overview of various thermal analysis techniques available for analyzing biodegradable edible films (viz. Differential Scanning Calorimetry, Thermogravimetric Analysis, Dynamic Mechanical Analysis, and Thermomechanical Analysis), as well as explores the interrelation between film properties and thermal stability such as film crystallinity, morphological attributes, chemical arrangement, nano-reinforcements and interaction with other ingredients. Furthermore, the thermal behaviour of biopolymers and the recent advancements aimed at engineering desirable thermal behaviour into edible films are extensively discussed. The present study contributes to the current knowledge base and serves as a valuable resource for researchers in the field of food packaging and material science.</p>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"40 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s12393-024-09380-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Poor thermal stability of packaging materials represents a significant obstacle impeding their applications as alternatives to non-biodegradable plastics in the food packaging sector. The thermal stability of biopolymeric films is essential for upholding their structural integrity and preventing degradation at different temperatures during processing, transportation, and storage, thereby safeguarding the quality and safety of packaged food items. A deeper understanding of the interplay between material composition, processing conditions, and thermal behavior will foster the development of stable edible films capable of withstanding elevated temperatures while maintaining their structural integrity and functional attributes. This review provides an overview of various thermal analysis techniques available for analyzing biodegradable edible films (viz. Differential Scanning Calorimetry, Thermogravimetric Analysis, Dynamic Mechanical Analysis, and Thermomechanical Analysis), as well as explores the interrelation between film properties and thermal stability such as film crystallinity, morphological attributes, chemical arrangement, nano-reinforcements and interaction with other ingredients. Furthermore, the thermal behaviour of biopolymers and the recent advancements aimed at engineering desirable thermal behaviour into edible films are extensively discussed. The present study contributes to the current knowledge base and serves as a valuable resource for researchers in the field of food packaging and material science.
期刊介绍:
Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.