{"title":"Advancing predictive maintenance: a deep learning approach to sensor and event-log data fusion","authors":"Zengkun Liu, Justine Hui","doi":"10.1108/sr-03-2024-0183","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to introduce an innovative approach to predictive maintenance by integrating time-series sensor data with event logs, leveraging the synergistic potential of deep learning models. The primary goal is to enhance the accuracy of equipment failure predictions, thereby minimizing operational downtime.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The methodology uses a dual-model architecture, combining the patch time series transformer (PatchTST) model for analyzing time-series sensor data and bidirectional encoder representations from transformers for processing textual event log data. Two distinct fusion strategies, namely, early and late fusion, are explored to integrate these data sources effectively. The early fusion approach merges data at the initial stages of processing, while late fusion combines model outputs toward the end. This research conducts thorough experiments using real-world data from wind turbines to validate the approach.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results demonstrate a significant improvement in fault prediction accuracy, with early fusion strategies outperforming traditional methods by 2.6% to 16.9%. Late fusion strategies, while more stable, underscore the benefit of integrating diverse data types for predictive maintenance. The study provides empirical evidence of the superiority of the fusion-based methodology over singular data source approaches.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This research is distinguished by its novel fusion-based approach to predictive maintenance, marking a departure from conventional single-source data analysis methods. By incorporating both time-series sensor data and textual event logs, the study unveils a comprehensive and effective strategy for fault prediction, paving the way for future advancements in the field.</p><!--/ Abstract__block -->","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":"374 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-03-2024-0183","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study aims to introduce an innovative approach to predictive maintenance by integrating time-series sensor data with event logs, leveraging the synergistic potential of deep learning models. The primary goal is to enhance the accuracy of equipment failure predictions, thereby minimizing operational downtime.
Design/methodology/approach
The methodology uses a dual-model architecture, combining the patch time series transformer (PatchTST) model for analyzing time-series sensor data and bidirectional encoder representations from transformers for processing textual event log data. Two distinct fusion strategies, namely, early and late fusion, are explored to integrate these data sources effectively. The early fusion approach merges data at the initial stages of processing, while late fusion combines model outputs toward the end. This research conducts thorough experiments using real-world data from wind turbines to validate the approach.
Findings
The results demonstrate a significant improvement in fault prediction accuracy, with early fusion strategies outperforming traditional methods by 2.6% to 16.9%. Late fusion strategies, while more stable, underscore the benefit of integrating diverse data types for predictive maintenance. The study provides empirical evidence of the superiority of the fusion-based methodology over singular data source approaches.
Originality/value
This research is distinguished by its novel fusion-based approach to predictive maintenance, marking a departure from conventional single-source data analysis methods. By incorporating both time-series sensor data and textual event logs, the study unveils a comprehensive and effective strategy for fault prediction, paving the way for future advancements in the field.
期刊介绍:
Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments.
Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles.
All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable.
Sensor Review’s coverage includes, but is not restricted to:
Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors
Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors
Temperature sensors, infrared sensors, humidity sensors
Optical, electro-optical and fibre-optic sensors and systems, photonic sensors
Biosensors, wearable and implantable sensors and systems, immunosensors
Gas and chemical sensors and systems, polymer sensors
Acoustic and ultrasonic sensors
Haptic sensors and devices
Smart and intelligent sensors and systems
Nanosensors, NEMS, MEMS, and BioMEMS
Quantum sensors
Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.