Nanozyme-based sensors for cancer diagnosis

IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Biosensors and Bioelectronics: X Pub Date : 2024-07-02 DOI:10.1016/j.biosx.2024.100512
Olga Guliy, Lev Dykman
{"title":"Nanozyme-based sensors for cancer diagnosis","authors":"Olga Guliy,&nbsp;Lev Dykman","doi":"10.1016/j.biosx.2024.100512","DOIUrl":null,"url":null,"abstract":"<div><p>Many biosensor technologies that can precisely and sensitively identify biomarkers reflecting disease status are being developed to help with early cancer detection and anticancer treatment monitoring. The creation of sensors based on nanozymes is one of the novel approaches in the intricate diagnosis and treatment of cancers. Because natural enzyme sensors can be unstable and expensive, the use of nanozymes in biosensors offers a great substitute for this type of study. Nanozymes have a stable shelf life, great operational reliability, cheap cost, and outstanding catalytic activity. The technological approaches to generating nanozymes and their use in sensors are briefly described in the paper. A summary of the many kinds of biosensors based on diverse kinds of nanomaterials for the identification of cancer biomarkers is provided, along with a discussion of the latest developments and challenges in the field of nanozyme biosensors for use in cancer diagnosis.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100512"},"PeriodicalIF":10.6100,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000761/pdfft?md5=c564e41c482200bbd63670b988b5dd3d&pid=1-s2.0-S2590137024000761-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Many biosensor technologies that can precisely and sensitively identify biomarkers reflecting disease status are being developed to help with early cancer detection and anticancer treatment monitoring. The creation of sensors based on nanozymes is one of the novel approaches in the intricate diagnosis and treatment of cancers. Because natural enzyme sensors can be unstable and expensive, the use of nanozymes in biosensors offers a great substitute for this type of study. Nanozymes have a stable shelf life, great operational reliability, cheap cost, and outstanding catalytic activity. The technological approaches to generating nanozymes and their use in sensors are briefly described in the paper. A summary of the many kinds of biosensors based on diverse kinds of nanomaterials for the identification of cancer biomarkers is provided, along with a discussion of the latest developments and challenges in the field of nanozyme biosensors for use in cancer diagnosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纳米酶的癌症诊断传感器
目前正在开发许多生物传感器技术,以帮助早期癌症检测和抗癌治疗监测,这些技术能够精确、灵敏地识别反映疾病状态的生物标志物。基于纳米酶的传感器是癌症复杂诊断和治疗的新方法之一。由于天然酶传感器既不稳定又昂贵,在生物传感器中使用纳米酶为这类研究提供了一个很好的替代品。纳米酶具有稳定的保存期、极高的操作可靠性、低廉的成本和出色的催化活性。本文简要介绍了生成纳米酶的技术方法及其在传感器中的应用。本文概述了基于各种纳米材料的多种生物传感器,用于识别癌症生物标志物,并讨论了用于癌症诊断的纳米酶生物传感器领域的最新发展和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors and Bioelectronics: X
Biosensors and Bioelectronics: X Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
166
审稿时长
54 days
期刊介绍: Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.
期刊最新文献
Printed dry and ready-to-use in vitro diagnostic culture media devices for differentiation and antimicrobial susceptibility testing of bacteria Development of novel DNA aptamers and colorimetric nanozyme aptasensor for targeting multi-drug-resistant, invasive Salmonella typhimurium strain SMC25 Performance of label-free biosensors as a function of layer thickness Simple and sensitive method for in vitro monitoring of red blood cell viscoelasticity by Quartz Crystal Microbalance with dissipation monitoring (QCM-D) Targeted biosensors for intracellular lipid droplet content detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1