Yujing Wang , Xiaoxing Xu , Lan Gu , Rongqi Zhang , Ying Peng , Xiaoyong Jin , Beibei Kou
{"title":"AuNPs/CaHF NPs/N-GDY as bifunctional nanozyme breaking pH limitation for miRNA-21 sensitive detection at physiological pH","authors":"Yujing Wang , Xiaoxing Xu , Lan Gu , Rongqi Zhang , Ying Peng , Xiaoyong Jin , Beibei Kou","doi":"10.1016/j.biosx.2024.100514","DOIUrl":null,"url":null,"abstract":"<div><p>Nanozyme cascade have garnered substantial interest in recent years due to their distinctive properties. However, the conventional stepwise cascade reaction undergoes tedious two-step operation process owing to the incompatibility of reaction conditions. Moreover, most of reported nanozymes exhibit favorable catalytic performance only in acidic medium, which greatly restricts their usage especially in biochemical analysis. To address above challenges, we developed gold nanoparticles/calcium hexacyanoferrate (Ⅲ)/nitrogen-doped graphitic alkyne (AuNPs/CaHF NPs/N-GDY) nanozyme with superior cascade catalytic activity at neutral pH comparable to that of acidic. Specifically, AuNPs/CaHF NPs/N-GDY simultaneously possessed glucose oxidase-like (GOx) and peroxidase-like (HRP) activities, which could induce one-step cascade reaction in the presence of glucose, resulting in 5-fold enhancement in catalytic efficiency compared with conventional two-step cascade reaction. Besides, tripedal DNA walker was equipped with sufficient walking legs to walk on directional and highly controllable stepped track, reducing the possibility of derailment and boosting walking efficiency. As a proof of concept, a novel electrochemical biosensor was constructed for miRNA-21 sensitive detection <span>at physiological pH</span><svg><path></path></svg>, and successfully applied in human serum samples as well as practical intracellular analysis, offering great potential in biomedical research and clinical diagnosis.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100514"},"PeriodicalIF":10.6100,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000785/pdfft?md5=c78a3b6724c1f7fd4dc33bbd19b1635c&pid=1-s2.0-S2590137024000785-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Nanozyme cascade have garnered substantial interest in recent years due to their distinctive properties. However, the conventional stepwise cascade reaction undergoes tedious two-step operation process owing to the incompatibility of reaction conditions. Moreover, most of reported nanozymes exhibit favorable catalytic performance only in acidic medium, which greatly restricts their usage especially in biochemical analysis. To address above challenges, we developed gold nanoparticles/calcium hexacyanoferrate (Ⅲ)/nitrogen-doped graphitic alkyne (AuNPs/CaHF NPs/N-GDY) nanozyme with superior cascade catalytic activity at neutral pH comparable to that of acidic. Specifically, AuNPs/CaHF NPs/N-GDY simultaneously possessed glucose oxidase-like (GOx) and peroxidase-like (HRP) activities, which could induce one-step cascade reaction in the presence of glucose, resulting in 5-fold enhancement in catalytic efficiency compared with conventional two-step cascade reaction. Besides, tripedal DNA walker was equipped with sufficient walking legs to walk on directional and highly controllable stepped track, reducing the possibility of derailment and boosting walking efficiency. As a proof of concept, a novel electrochemical biosensor was constructed for miRNA-21 sensitive detection at physiological pH, and successfully applied in human serum samples as well as practical intracellular analysis, offering great potential in biomedical research and clinical diagnosis.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.