Jacek Wasik, Joseph Sutcliffe, Renaud Podor, Jarrod Lewis, James Edward Darnbrough, Sophie Rennie, Syed Akbar Hussain, Christopher Bell, Daniel Alexander Chaney, Gareth Griffiths, Lottie Mae Harding, Florence Legg, Eleanor Lawrence Bright, Rebecca Nicholls, Yadukrishnan Sasikumar, Angus Siberry, Philip Smith, Ross Springell
{"title":"Polyepitaxial grain matching to study the oxidation of uranium dioxide","authors":"Jacek Wasik, Joseph Sutcliffe, Renaud Podor, Jarrod Lewis, James Edward Darnbrough, Sophie Rennie, Syed Akbar Hussain, Christopher Bell, Daniel Alexander Chaney, Gareth Griffiths, Lottie Mae Harding, Florence Legg, Eleanor Lawrence Bright, Rebecca Nicholls, Yadukrishnan Sasikumar, Angus Siberry, Philip Smith, Ross Springell","doi":"10.1038/s41529-024-00479-1","DOIUrl":null,"url":null,"abstract":"Although the principal physical behaviour of a material is inherently connected to its fundamental crystal structure, the behaviours observed in the real-world are often driven by the microstructure, which for many polycrystalline materials, equates to the size and shape of the constituent crystal grains. Here we highlight a cutting edge synthesis route to the controlled engineering of grain structures in thin films and the simplification of associated 3-dimensional problems to less complex 2D ones. This has been applied to the actinide ceramic, uranium dioxide, to replicate structures typical in nuclear fission fuel pellets, in order to investigate the oxidation and subsequent transformation of cubic UO2 to orthorhombic U3O8. This article shows how this synthesis approach could be utilised to investigate a range of phenomena, affected by grain morphology, and highlights some unusual results in the oxidation behaviour of UO2, regarding the phase transition to U3O8.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00479-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00479-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Although the principal physical behaviour of a material is inherently connected to its fundamental crystal structure, the behaviours observed in the real-world are often driven by the microstructure, which for many polycrystalline materials, equates to the size and shape of the constituent crystal grains. Here we highlight a cutting edge synthesis route to the controlled engineering of grain structures in thin films and the simplification of associated 3-dimensional problems to less complex 2D ones. This has been applied to the actinide ceramic, uranium dioxide, to replicate structures typical in nuclear fission fuel pellets, in order to investigate the oxidation and subsequent transformation of cubic UO2 to orthorhombic U3O8. This article shows how this synthesis approach could be utilised to investigate a range of phenomena, affected by grain morphology, and highlights some unusual results in the oxidation behaviour of UO2, regarding the phase transition to U3O8.
期刊介绍:
npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure.
The journal covers a broad range of topics including but not limited to:
-Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli
-Computational and experimental studies of degradation mechanisms and kinetics
-Characterization of degradation by traditional and emerging techniques
-New approaches and technologies for enhancing resistance to degradation
-Inspection and monitoring techniques for materials in-service, such as sensing technologies