Mixed-Matrix Organo–Silica–Hydrotalcite Membrane for CO2 Separation Part 2: Permeation and Selectivity Study

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL Membranes Pub Date : 2024-07-12 DOI:10.3390/membranes14070156
Lucas Bünger, Tim Kurtz, K. Garbev, P. Stemmermann, Dieter Stapf
{"title":"Mixed-Matrix Organo–Silica–Hydrotalcite Membrane for CO2 Separation Part 2: Permeation and Selectivity Study","authors":"Lucas Bünger, Tim Kurtz, K. Garbev, P. Stemmermann, Dieter Stapf","doi":"10.3390/membranes14070156","DOIUrl":null,"url":null,"abstract":"This study introduces an innovative approach to designing membranes capable of separating CO2 from industrial gas streams at higher temperatures. The novel membrane design seeks to leverage a well-researched, high-temperature CO2 adsorbent, hydrotalcite, by transforming it into a membrane. This was achieved by combining it with an amorphous organo-silica-based matrix, extending the polymer-based mixed-matrix membrane concept to inorganic compounds. Following the membrane material preparation and investigation of the individual membrane in Part 1 of this study, we examine its permeation and selectivity here. The pure 200 nm thick hydrotalcite membrane exhibits Knudsen behavior due to large intercrystalline pores. In contrast, the organo-silica membrane demonstrates an ideal selectivity of 13.5 and permeance for CO2 of 1.3 × 10−7 mol m−2 s−1 Pa−1 at 25 °C, and at 150 °C, the selectivity is reduced to 4.3. Combining both components results in a hybrid microstructure, featuring selective surface diffusion in the microporous regions and unselective Knudsen diffusion in the mesoporous regions. Further attempts to bridge both components to form a purely microporous microstructure are outlined.","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14070156","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an innovative approach to designing membranes capable of separating CO2 from industrial gas streams at higher temperatures. The novel membrane design seeks to leverage a well-researched, high-temperature CO2 adsorbent, hydrotalcite, by transforming it into a membrane. This was achieved by combining it with an amorphous organo-silica-based matrix, extending the polymer-based mixed-matrix membrane concept to inorganic compounds. Following the membrane material preparation and investigation of the individual membrane in Part 1 of this study, we examine its permeation and selectivity here. The pure 200 nm thick hydrotalcite membrane exhibits Knudsen behavior due to large intercrystalline pores. In contrast, the organo-silica membrane demonstrates an ideal selectivity of 13.5 and permeance for CO2 of 1.3 × 10−7 mol m−2 s−1 Pa−1 at 25 °C, and at 150 °C, the selectivity is reduced to 4.3. Combining both components results in a hybrid microstructure, featuring selective surface diffusion in the microporous regions and unselective Knudsen diffusion in the mesoporous regions. Further attempts to bridge both components to form a purely microporous microstructure are outlined.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于分离二氧化碳的混合基质有机硅氢铝土膜 第 2 部分:渗透性和选择性研究
本研究介绍了一种创新方法,用于设计能够在较高温度下从工业气体流中分离二氧化碳的膜。新颖的膜设计旨在利用一种经过深入研究的高温二氧化碳吸附剂--氢铝土,将其转化为一种膜。通过将其与无定形有机硅基质相结合,将基于聚合物的混合基质膜概念扩展到无机化合物,从而实现了这一目标。继本研究第一部分的膜材料制备和单个膜的研究之后,我们在此研究其渗透性和选择性。由于晶间孔隙较大,200 nm 厚的纯氢氧化铝膜表现出克努森特性。相比之下,有机硅膜在 25 °C 时的理想选择性为 13.5,对二氧化碳的渗透率为 1.3 × 10-7 mol m-2 s-1 Pa-1,在 150 °C 时,选择性降至 4.3。将这两种成分结合在一起会产生一种混合微观结构,其特点是微孔区域的选择性表面扩散和介孔区域的非选择性克努森扩散。本文概述了将这两种成分桥接起来以形成纯微孔微结构的进一步尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
期刊最新文献
The Application of TiO2/ZrO2-Modified Nanocomposite PES Membrane for Improved Permeability of Textile Dye in Water. Computational Fluid Dynamics Modelling of Hydrogen Production via Water Splitting in Oxygen Membrane Reactors. Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism. The Influence of Cholesterol on Membrane Targeted Bioactive Peptides: Modulating Peptide Activity Through Changes in Bilayer Biophysical Properties. Cell Type-Specific Anti- and Pro-Oxidative Effects of Punica granatum L. Ellagitannins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1