Jie Su , Fanhua Kong , Haiwei Yin , Michael E. Meadows , Liding Chen , Hong S. He , Hui Sun , Zhenya Li , Kejing Zhou , Bin Chen
{"title":"Essential contribution of habitats in non-protected areas to climate-driven species migration in China","authors":"Jie Su , Fanhua Kong , Haiwei Yin , Michael E. Meadows , Liding Chen , Hong S. He , Hui Sun , Zhenya Li , Kejing Zhou , Bin Chen","doi":"10.1016/j.geosus.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><div>Given the reality of climate-driven migration, the net effectiveness of existing spatially fixed protected areas (PAs) to biodiversity conservation is expected to decline, while the potential of non-PA habitats (non-PAs, i.e., natural, altered, or artificial ecosystems that are not formally designated as PAs) for biodiversity conservation is gaining attention. However, the contribution of non-PAs to biodiversity conservation remains poorly understood. With the aim of comprehensively assessing the effectiveness of non-PAs as transient refugia and steppingstones during future climate-change-induced migration of species in China, a six-metric integrated framework was applied and statistics of these metrics for PAs and non-PAs are compared. Results reveal that, a greater area of non-PAs has a low velocity of climate change (VoCC) compared to that of PAs, and can therefore serve as temporary refugia for species. The disappearing climate index (DCI) and novel climate index (NCI) results show that some 17 % of the subdivided climate classes within the PAs have changed. However, the displacement index (DI) results imply that nearly half (48.98 %) of the PAs need non-PAs to provide transient refugia for climate-driven migration of species in PAs. The higher ratio of effective steppingstones measured using the climate corridor score (CCS) and landscape current flow (LCF) further emphasizes that non-PAs play a more significant role as steppingstones for climate-driven migration than do PAs in terms of both their structural and functional connectivity. Our research further demonstrates that a conservation approach that improves connectivity among PAs and considers Other Effective area-based Conservation Measures (OECMs) is essential for long-term biodiversity adaptation to climate change.</div></div>","PeriodicalId":52374,"journal":{"name":"Geography and Sustainability","volume":"6 1","pages":"Article 100203"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666683924000506","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Given the reality of climate-driven migration, the net effectiveness of existing spatially fixed protected areas (PAs) to biodiversity conservation is expected to decline, while the potential of non-PA habitats (non-PAs, i.e., natural, altered, or artificial ecosystems that are not formally designated as PAs) for biodiversity conservation is gaining attention. However, the contribution of non-PAs to biodiversity conservation remains poorly understood. With the aim of comprehensively assessing the effectiveness of non-PAs as transient refugia and steppingstones during future climate-change-induced migration of species in China, a six-metric integrated framework was applied and statistics of these metrics for PAs and non-PAs are compared. Results reveal that, a greater area of non-PAs has a low velocity of climate change (VoCC) compared to that of PAs, and can therefore serve as temporary refugia for species. The disappearing climate index (DCI) and novel climate index (NCI) results show that some 17 % of the subdivided climate classes within the PAs have changed. However, the displacement index (DI) results imply that nearly half (48.98 %) of the PAs need non-PAs to provide transient refugia for climate-driven migration of species in PAs. The higher ratio of effective steppingstones measured using the climate corridor score (CCS) and landscape current flow (LCF) further emphasizes that non-PAs play a more significant role as steppingstones for climate-driven migration than do PAs in terms of both their structural and functional connectivity. Our research further demonstrates that a conservation approach that improves connectivity among PAs and considers Other Effective area-based Conservation Measures (OECMs) is essential for long-term biodiversity adaptation to climate change.
期刊介绍:
Geography and Sustainability serves as a central hub for interdisciplinary research and education aimed at promoting sustainable development from an integrated geography perspective. By bridging natural and human sciences, the journal fosters broader analysis and innovative thinking on global and regional sustainability issues.
Geography and Sustainability welcomes original, high-quality research articles, review articles, short communications, technical comments, perspective articles and editorials on the following themes:
Geographical Processes: Interactions with and between water, soil, atmosphere and the biosphere and their spatio-temporal variations;
Human-Environmental Systems: Interactions between humans and the environment, resilience of socio-ecological systems and vulnerability;
Ecosystem Services and Human Wellbeing: Ecosystem structure, processes, services and their linkages with human wellbeing;
Sustainable Development: Theory, practice and critical challenges in sustainable development.