{"title":"N-DIBL optimization of NC-GAAFET NW for low power fast switching applications","authors":"Vivek Kumar, Ravindra Kumar Maurya, Kavicharan Mummaneni","doi":"10.1016/j.mejo.2024.106321","DOIUrl":null,"url":null,"abstract":"<div><p>Gate-all-around field effect transistors (GAAFETs), exhibit improved SCEs, are proposed to replace conventional FinFET in scaled nanodevices owing to excellent gate control. The voltage scaling concept is embodied in negative capacitance (NC) which provides same on current at reduced voltage. The proposed NC-GAAFET yields 5.31 times larger I<sub>ON</sub> and I<sub>OFF</sub> is significantly reduced by ⁓10<sup>5</sup> orders, which is due NC effect, compared to baseline NW. SS<sub>avg</sub> for the NC-GAAFET is 33mV/dec which surpasses Boltzmann tyranny and manifests steep subthreshold behavior. Effect of FE thickness (t<sub>fe</sub>) variations on DIBL has been explored and found to be negative, which improves SCEs. The negative-DIBL for device has been found to be −20 mV/V at t<sub>fe</sub> = 6 nm. Furthermore, a CMOS inverter circuit employing the NC-GAAFET has been presented that provides an average propagation delay of 174 fS which is 47 % lesser as compared to that of baseline device. The NC-GAAFET NW findings fulfill the quest of low power fast switching device for digital applications.</p></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239124000250","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Gate-all-around field effect transistors (GAAFETs), exhibit improved SCEs, are proposed to replace conventional FinFET in scaled nanodevices owing to excellent gate control. The voltage scaling concept is embodied in negative capacitance (NC) which provides same on current at reduced voltage. The proposed NC-GAAFET yields 5.31 times larger ION and IOFF is significantly reduced by ⁓105 orders, which is due NC effect, compared to baseline NW. SSavg for the NC-GAAFET is 33mV/dec which surpasses Boltzmann tyranny and manifests steep subthreshold behavior. Effect of FE thickness (tfe) variations on DIBL has been explored and found to be negative, which improves SCEs. The negative-DIBL for device has been found to be −20 mV/V at tfe = 6 nm. Furthermore, a CMOS inverter circuit employing the NC-GAAFET has been presented that provides an average propagation delay of 174 fS which is 47 % lesser as compared to that of baseline device. The NC-GAAFET NW findings fulfill the quest of low power fast switching device for digital applications.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.