ANN-based framework for modeling process induced variation using BSIM-CMG unified model

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Solid-state Electronics Pub Date : 2024-07-22 DOI:10.1016/j.sse.2024.108988
Anant Singhal , Yogendra Machhiwar , Shashank Kumar , Girish Pahwa , Harshit Agarwal
{"title":"ANN-based framework for modeling process induced variation using BSIM-CMG unified model","authors":"Anant Singhal ,&nbsp;Yogendra Machhiwar ,&nbsp;Shashank Kumar ,&nbsp;Girish Pahwa ,&nbsp;Harshit Agarwal","doi":"10.1016/j.sse.2024.108988","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we present a machine-learning augmented compact modeling framework for modeling process induced variations in advanced semiconductor devices. The framework employs BSIM-CMG unified compact model at the core and can be used for any advanced devices like GAA nanosheets and nanowires, FinFETs etc. We have validated the model with extensive numerical simulations and experimental data such as <span><math><mrow><mn>14</mn><mspace></mspace><mi>nm</mi></mrow></math></span> technology FinFET and <span><math><mrow><mn>24</mn><mspace></mspace><mi>nm</mi></mrow></math></span> technology Nanowire. Our results show excellent accuracy in modeling variability in key electrical parameters of the device including off-current (<em>I</em><sub>off</sub>), on-current (<em>I</em><sub>on</sub>), threshold voltage (<em>V</em><sub>th</sub>), subthreshold swing (<em>SS</em>) etc. We observe that the overall accuracy of the ML-based framework strongly depends on the nature and physical behavior of the core model used for modeling the nominal device.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"220 ","pages":"Article 108988"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001370","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a machine-learning augmented compact modeling framework for modeling process induced variations in advanced semiconductor devices. The framework employs BSIM-CMG unified compact model at the core and can be used for any advanced devices like GAA nanosheets and nanowires, FinFETs etc. We have validated the model with extensive numerical simulations and experimental data such as 14nm technology FinFET and 24nm technology Nanowire. Our results show excellent accuracy in modeling variability in key electrical parameters of the device including off-current (Ioff), on-current (Ion), threshold voltage (Vth), subthreshold swing (SS) etc. We observe that the overall accuracy of the ML-based framework strongly depends on the nature and physical behavior of the core model used for modeling the nominal device.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 BSIM-CMG 统一模型,建立基于 ANN 的流程诱导变异建模框架
在这项工作中,我们提出了一个机器学习增强紧凑建模框架,用于对先进半导体器件的工艺诱导变化进行建模。该框架以 BSIM-CMG 统一紧凑模型为核心,可用于 GAA 纳米片和纳米线、FinFET 等任何先进器件。我们通过大量的数值模拟和实验数据(如 14 纳米技术 FinFET 和 24 纳米技术纳米线)验证了该模型。我们的结果表明,该模型在模拟关断电流 (Ioff)、导通电流 (Ion)、阈值电压 (Vth)、亚阈值电压摆幅 (SS) 等器件关键电气参数的变化方面具有出色的准确性。我们注意到,基于 ML 的框架的整体准确性在很大程度上取决于用于标称器件建模的内核模型的性质和物理行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
期刊最新文献
Temperature influence on experimental analog behavior of MISHEMTs A novel method used to prepare PN junction by plasmon generated under pulsed laser irradiation on silicon chip Achieving 15.75% efficiency in solar cells: Advanced surface engineering using Tetra-Tert-Butyl-Tercarbazol-Benzonitrile and organic layer integration in n-type silicon wafer and hybrid Planar-Si systems Influence of Ag-Bi2S3 nanocomposites for highly sensitive and selective Cl2 gas sensors: Synthesis, characterization, and gas sensing performance Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1