W. Ji , O. Muransky , C. Barr , R. Subbaramaiah , N.J. Edwards , M. Brandt , S. Palanisamy , C. Wallbrink
{"title":"Development and experimental validation of a thermo-metallurgical-mechanical model of the laser metal deposition (LMD) process","authors":"W. Ji , O. Muransky , C. Barr , R. Subbaramaiah , N.J. Edwards , M. Brandt , S. Palanisamy , C. Wallbrink","doi":"10.1016/j.ijpvp.2024.105261","DOIUrl":null,"url":null,"abstract":"<div><p>The current paper presents the development and experimental validation of a thermo-metallurgical-mechanical model for a multi-pass Laser Metal Deposition (LMD) process, with the objective of accurately predicting the resultant constituent phases and residual stresses. The thermal model is calibrated using temperature readings and is shown to accurately capture the transient temperature field and extent of the fusion zone associated with the multi-pass LMD process. The metallurgical model incorporates the kinetics of ongoing solid-state phase transformations (SSPTs) and tempering reactions. The predictions are validated via hardness measurements, demonstrating a very good agreement with the predictions. The developed mechanical model predicts the residual stress field, which is validated using X-ray diffraction measurements, and the comparison also shows a very good agreement between the predictions and measurements. The validated numerical model is then used to explore alternative LMD strategies showing that the choice of deposition strategy can significantly impact resultant constituent phases and residual stresses.</p></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"211 ","pages":"Article 105261"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124001388","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current paper presents the development and experimental validation of a thermo-metallurgical-mechanical model for a multi-pass Laser Metal Deposition (LMD) process, with the objective of accurately predicting the resultant constituent phases and residual stresses. The thermal model is calibrated using temperature readings and is shown to accurately capture the transient temperature field and extent of the fusion zone associated with the multi-pass LMD process. The metallurgical model incorporates the kinetics of ongoing solid-state phase transformations (SSPTs) and tempering reactions. The predictions are validated via hardness measurements, demonstrating a very good agreement with the predictions. The developed mechanical model predicts the residual stress field, which is validated using X-ray diffraction measurements, and the comparison also shows a very good agreement between the predictions and measurements. The validated numerical model is then used to explore alternative LMD strategies showing that the choice of deposition strategy can significantly impact resultant constituent phases and residual stresses.
期刊介绍:
Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants.
The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome:
• Pressure vessel engineering
• Structural integrity assessment
• Design methods
• Codes and standards
• Fabrication and welding
• Materials properties requirements
• Inspection and quality management
• Maintenance and life extension
• Ageing and environmental effects
• Life management
Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time.
International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.