Precise parameter estimation of PEM fuel cell via weighted mean of vectors optimizer

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Computational Electronics Pub Date : 2024-08-02 DOI:10.1007/s10825-024-02204-2
Badis Lekouaghet, Mohammed Amin Khelifa, Abdelkrim Boukabou
{"title":"Precise parameter estimation of PEM fuel cell via weighted mean of vectors optimizer","authors":"Badis Lekouaghet, Mohammed Amin Khelifa, Abdelkrim Boukabou","doi":"10.1007/s10825-024-02204-2","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with the determination of the optimal values to be given for the seven unknown parameters of the proton exchange membrane fuel cell (PEMFC). To this end, the weighted mean of vectors optimizer (INFO) metaheuristic algorithm is applied to estimate these parameters by minimizing the sum of squared errors (SSEs) between the measured and calculated voltages of the PEMFC. Three commercial types of PEMFCs are investigated: (i) BCS 500 W Stack, (ii) NedStack PS6 Stack, and (iii) Horizon 500 W Stack. The accuracy of the applied INFO algorithm is verified by comparing the estimated voltage–current <span>\\((I-V)\\)</span> characteristics with the measured data. Furthermore, the estimated parameters of electrical PEMFCs, the minimum reached SSE, and the standard deviation Std values achieved by INFO are compared with the results obtained using other competitive metaheuristic optimization algorithms such as Honey badger algorithm, Gradient-based optimizer, Harris hawks optimization, and others. From the obtained results, the convergence curves show that the unknown parameters of the three PEMFCs are better estimated using the proposed INFO than other algorithms.</p>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10825-024-02204-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the determination of the optimal values to be given for the seven unknown parameters of the proton exchange membrane fuel cell (PEMFC). To this end, the weighted mean of vectors optimizer (INFO) metaheuristic algorithm is applied to estimate these parameters by minimizing the sum of squared errors (SSEs) between the measured and calculated voltages of the PEMFC. Three commercial types of PEMFCs are investigated: (i) BCS 500 W Stack, (ii) NedStack PS6 Stack, and (iii) Horizon 500 W Stack. The accuracy of the applied INFO algorithm is verified by comparing the estimated voltage–current \((I-V)\) characteristics with the measured data. Furthermore, the estimated parameters of electrical PEMFCs, the minimum reached SSE, and the standard deviation Std values achieved by INFO are compared with the results obtained using other competitive metaheuristic optimization algorithms such as Honey badger algorithm, Gradient-based optimizer, Harris hawks optimization, and others. From the obtained results, the convergence curves show that the unknown parameters of the three PEMFCs are better estimated using the proposed INFO than other algorithms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过向量加权平均优化器精确估算 PEM 燃料电池参数
本文探讨如何确定质子交换膜燃料电池(PEMFC)七个未知参数的最优值。为此,采用加权平均向量优化器(INFO)元启发式算法,通过最小化 PEMFC 测量电压与计算电压之间的平方误差之和(SSE)来估计这些参数。研究了三种商用 PEMFC:(i) BCS 500 W Stack、(ii) NedStack PS6 Stack 和 (iii) Horizon 500 W Stack。通过比较估计的电压-电流((I-V)\)特性与测量数据,验证了所应用的 INFO 算法的准确性。此外,还将 INFO 算法估算的 PEMFC 电气参数、达到的最小 SSE 值和标准偏差 Std 值与使用其他有竞争力的元启发式优化算法(如蜜獾算法、基于梯度的优化器、哈里斯鹰优化等)获得的结果进行了比较。从获得的结果来看,收敛曲线表明,与其他算法相比,使用 INFO 估算三个 PEMFC 的未知参数效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
期刊最新文献
Modeling to study the shape, dimensionality and crystal structure dependence of energy band gap in nanosized semiconductors Analyzing the operational versatility of advanced IBC solar cells at different temperatures and also with variation in minority carrier lifetimes Chaotic computing cell based on nanostructured phase-change materials Features of paramagnetism of a two-dimensional electron gas depending on concentration and temperature A simulation study of electrostatically doped silicene and graphene nanoribbon FETs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1