Hee Ju Jung, Byungchan Kim, Tae-Rim Choi, Suk Jin Oh, Suwon Kim, Yeda Lee, Yuni Shin, Suhye Choi, Jinok Oh, So Yeon Park, Young Sik Lee, Young Heon Choi, Yung-Hun Yang
{"title":"Novel differential scanning calorimetry (DSC) application to select polyhydroxyalkanoate (PHA) producers correlating 3-hydroxyhexanoate (3-HHx) monomer with melting enthalpy.","authors":"Hee Ju Jung, Byungchan Kim, Tae-Rim Choi, Suk Jin Oh, Suwon Kim, Yeda Lee, Yuni Shin, Suhye Choi, Jinok Oh, So Yeon Park, Young Sik Lee, Young Heon Choi, Yung-Hun Yang","doi":"10.1007/s00449-024-03054-9","DOIUrl":null,"url":null,"abstract":"<p><p>Polyhydroxyalkanoate (PHA) is an environmental alternative to petroleum-based plastics because of its biodegradability. The polymer properties of PHA have been improved by the incorporation of different monomers. Traditionally, the monomer composition of PHA has been analyzed using gas chromatography (GC) and nuclear magnetic resonance (NMR), providing accurate monomer composition. However, sequential analysis of the thermal properties of PHA using differential scanning calorimetry (DSC) remains necessary, providing crucial insights into its thermal characteristics. To shorten the monomer composition and thermal property analysis, we directly applied DSC to the analysis of the obtained PHA film and observed a high correlation (r<sup>2</sup> = 0.98) between melting enthalpy and the 3-hydroxyhexanoate (3-HHx) mole fraction in the polymer. A higher 3-HHx fraction resulted in a lower melting enthalpy as 3-HHx provided the polymer with higher flexibility. Based on this, we selected the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)) producing strain from Cupriavidus strains that newly screened and transformed with vectors containing P(3HB-co-3HHx) biosynthetic genes, achieving an average error rate below 1.8% between GC and DSC results. Cupriavidus sp. BK2 showed a high 3-HHx mole fraction, up to 10.38 mol%, with T<sub>m </sub>(℃) = 171.5 and ΔH of T<sub>m</sub> (J/g) = 48.0, simultaneously detected via DSC. This study is an example of the expansion of DSC for PHA analysis from polymer science to microbial engineering.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03054-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polyhydroxyalkanoate (PHA) is an environmental alternative to petroleum-based plastics because of its biodegradability. The polymer properties of PHA have been improved by the incorporation of different monomers. Traditionally, the monomer composition of PHA has been analyzed using gas chromatography (GC) and nuclear magnetic resonance (NMR), providing accurate monomer composition. However, sequential analysis of the thermal properties of PHA using differential scanning calorimetry (DSC) remains necessary, providing crucial insights into its thermal characteristics. To shorten the monomer composition and thermal property analysis, we directly applied DSC to the analysis of the obtained PHA film and observed a high correlation (r2 = 0.98) between melting enthalpy and the 3-hydroxyhexanoate (3-HHx) mole fraction in the polymer. A higher 3-HHx fraction resulted in a lower melting enthalpy as 3-HHx provided the polymer with higher flexibility. Based on this, we selected the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)) producing strain from Cupriavidus strains that newly screened and transformed with vectors containing P(3HB-co-3HHx) biosynthetic genes, achieving an average error rate below 1.8% between GC and DSC results. Cupriavidus sp. BK2 showed a high 3-HHx mole fraction, up to 10.38 mol%, with Tm (℃) = 171.5 and ΔH of Tm (J/g) = 48.0, simultaneously detected via DSC. This study is an example of the expansion of DSC for PHA analysis from polymer science to microbial engineering.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.