State-of-the-art bias correction of climate models misrepresent climate science and misinform adaptation

V. Chandel, Udit Bhatia, A. Ganguly, Subimal Ghosh
{"title":"State-of-the-art bias correction of climate models misrepresent climate science and misinform adaptation","authors":"V. Chandel, Udit Bhatia, A. Ganguly, Subimal Ghosh","doi":"10.1088/1748-9326/ad6d82","DOIUrl":null,"url":null,"abstract":"\n Quantile Mapping (QM) based Bias Correction and Spatial Disaggregation (BCSD) have emerged as the de facto standard for rectifying bias and scale-mismatch in global climate models (GCMs) leading to novel climate science insights and new information for impacts and adaptation. Focusing on critical variables crucial for understanding climate dynamics in India and the United States, our evaluation challenges the premise of BCSD approach. We find that BCSD overcorrects GCM simulations to observed patterns while minimizing or even nullifying science-informed projections generated by GCMs. Furthermore, we show that BCSD incorrectly captures extremes and complex climate signals. Our evaluation in the context of the Walker Circulation suggests that this inability to adequately capture multivariate and spatial-temporal dependence patterns may at least partially explain the challenges with BCSD.","PeriodicalId":507917,"journal":{"name":"Environmental Research Letters","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad6d82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantile Mapping (QM) based Bias Correction and Spatial Disaggregation (BCSD) have emerged as the de facto standard for rectifying bias and scale-mismatch in global climate models (GCMs) leading to novel climate science insights and new information for impacts and adaptation. Focusing on critical variables crucial for understanding climate dynamics in India and the United States, our evaluation challenges the premise of BCSD approach. We find that BCSD overcorrects GCM simulations to observed patterns while minimizing or even nullifying science-informed projections generated by GCMs. Furthermore, we show that BCSD incorrectly captures extremes and complex climate signals. Our evaluation in the context of the Walker Circulation suggests that this inability to adequately capture multivariate and spatial-temporal dependence patterns may at least partially explain the challenges with BCSD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最先进的气候模型偏差修正错误地反映了气候科学并误导了适应工作
基于量子绘图(QM)的偏差校正和空间分解(BCSD)已成为纠正全球气候模型(GCMs)中的偏差和尺度不匹配的事实标准,从而带来新的气候科学见解以及影响和适应方面的新信息。我们的评估侧重于对了解印度和美国气候动态至关重要的关键变量,对 BCSD 方法的前提提出了质疑。我们发现,BCSD 过度修正了大气环流模型模拟的观测模式,同时将大气环流模型生成的有科学依据的预测降到最低甚至无效。此外,我们还发现 BCSD 无法正确捕捉极端气候和复杂的气候信号。我们在沃克环流背景下进行的评估表明,这种无法充分捕捉多变量和时空依赖模式的情况至少可以部分解释 BCSD 所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Responsible carbon dioxide removals and the EU’s 2040 climate target State-of-the-art bias correction of climate models misrepresent climate science and misinform adaptation Conceptualising global cultural transformation – Developing deep institutional scenarios for whole of society change Reliability and resilience of environmental flows under uncertainty: reconsidering water year types and inconsistent flow requirements in California Unequal economic consequences of coastal hazards: Hurricane impacts on North Carolina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1