Carlos Y. Fernández , Natalia Alvarez , Analu Rocha , Luis Felipe S. Mendes , Antonio J. Costa-Filho , Javier Ellena , Alzir A. Batista , Gianella Facchin
{"title":"Phenanthroline and phenyl carboxylate mixed ligand copper complexes in developing drugs to treat cancer","authors":"Carlos Y. Fernández , Natalia Alvarez , Analu Rocha , Luis Felipe S. Mendes , Antonio J. Costa-Filho , Javier Ellena , Alzir A. Batista , Gianella Facchin","doi":"10.1016/j.jinorgbio.2024.112700","DOIUrl":null,"url":null,"abstract":"<div><p>The success of a classic inorganic coordination compound, Cisplatin, <em>cis</em>-[Pt(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>], as the first anticancer metallodrug started a field of research dedicated to discovering coordination compounds with antitumor activity, encompassing various metals. Among these, copper complexes have emerged as interesting candidates to develop drugs to treat cancer. In this work, mixed ligand complexes of Cu(II) with diimines (phenanthroline or 4-methylphenanthroline) and 3-(4-hydroxyphenyl)propanoate, phenylcarboxylate or phenylacetate were synthesized. They were characterized in the solid state, including a new crystal structure of [Cu<sub>2</sub>(3-(4-hydroxyphenyl)propanoate)<sub>3</sub>(phenanthroline)<sub>2</sub>]Cl·H<sub>2</sub>O. The obtained complexes presented a variety of stoichiometries. In solution, complexes were partially dissociated in the corresponding Cu-diimine complex. The complexes bound to the DNA by partial intercalation and groove binding, as assessed by Circular Dichroism, relative viscosity change and UV–Vis titration. The cytotoxicity of the complexes was determined in vitro on MDA-MB-231, MCF-7 (human metastatic breast adenocarcinomas, the first triple negative), MCF-10A (breast nontumoral), A549 (human lung epithelial carcinoma), and MRC-5 (human nontumoral lung epithelial cells), finding an activity higher than that of Cisplatin, although with less selectivity.</p></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013424002241","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The success of a classic inorganic coordination compound, Cisplatin, cis-[Pt(NH3)2Cl2], as the first anticancer metallodrug started a field of research dedicated to discovering coordination compounds with antitumor activity, encompassing various metals. Among these, copper complexes have emerged as interesting candidates to develop drugs to treat cancer. In this work, mixed ligand complexes of Cu(II) with diimines (phenanthroline or 4-methylphenanthroline) and 3-(4-hydroxyphenyl)propanoate, phenylcarboxylate or phenylacetate were synthesized. They were characterized in the solid state, including a new crystal structure of [Cu2(3-(4-hydroxyphenyl)propanoate)3(phenanthroline)2]Cl·H2O. The obtained complexes presented a variety of stoichiometries. In solution, complexes were partially dissociated in the corresponding Cu-diimine complex. The complexes bound to the DNA by partial intercalation and groove binding, as assessed by Circular Dichroism, relative viscosity change and UV–Vis titration. The cytotoxicity of the complexes was determined in vitro on MDA-MB-231, MCF-7 (human metastatic breast adenocarcinomas, the first triple negative), MCF-10A (breast nontumoral), A549 (human lung epithelial carcinoma), and MRC-5 (human nontumoral lung epithelial cells), finding an activity higher than that of Cisplatin, although with less selectivity.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.