{"title":"Insight into uranyl binding by cyclic peptides from molecular dynamics and density functional theory.","authors":"James A Platts, Iogann Tolbatov","doi":"10.1016/j.jinorgbio.2024.112793","DOIUrl":null,"url":null,"abstract":"<p><p>It is a challenging task to develop uranyl-chelating agents based on peptide chemistry. A recently developed cationic dummy atom model of uranyl in conjunction with the classical molecular dynamics simulation presents a helpful utility to study the chelation of uranyl by peptides with a low computational cost. In the present study, it was used to describe the chelation of uranyl by the cyclic decapeptide with 4 Glu residues cyc-GluArgGluProGlyGluTrpGluProGly and its derivatives containing two phosphorylated serines in place of two Glu, termed pS16, pS18, pS38, and pS68. The obtained structures were further studied by density functional theory (DFT) and subsequent density analysis. We show that a combination of steered molecular dynamics and simulated annealing, using standard forcefields for peptide with the cationic dummy atom model of uranyl, can quickly and reliably obtain binding modes of uranyl-peptide complexes. Classical molecular dynamics simulation in explicit water produces geometry very close to the DFT-optimized structure. The presence of uranyl completely changes the conformation of these cyclic peptides from unstructured to organised. The simulation of a peptide with two uranyl units explained why only the 1:1 ratio of peptide and chelated-uranyl is observed experimentally in most cases, by the insufficiency of the anionic residues for the chelation of two UO<sub>2</sub><sup>2+</sup> units, but that pS16 can accommodate two such units.</p>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"264 ","pages":"112793"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jinorgbio.2024.112793","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It is a challenging task to develop uranyl-chelating agents based on peptide chemistry. A recently developed cationic dummy atom model of uranyl in conjunction with the classical molecular dynamics simulation presents a helpful utility to study the chelation of uranyl by peptides with a low computational cost. In the present study, it was used to describe the chelation of uranyl by the cyclic decapeptide with 4 Glu residues cyc-GluArgGluProGlyGluTrpGluProGly and its derivatives containing two phosphorylated serines in place of two Glu, termed pS16, pS18, pS38, and pS68. The obtained structures were further studied by density functional theory (DFT) and subsequent density analysis. We show that a combination of steered molecular dynamics and simulated annealing, using standard forcefields for peptide with the cationic dummy atom model of uranyl, can quickly and reliably obtain binding modes of uranyl-peptide complexes. Classical molecular dynamics simulation in explicit water produces geometry very close to the DFT-optimized structure. The presence of uranyl completely changes the conformation of these cyclic peptides from unstructured to organised. The simulation of a peptide with two uranyl units explained why only the 1:1 ratio of peptide and chelated-uranyl is observed experimentally in most cases, by the insufficiency of the anionic residues for the chelation of two UO22+ units, but that pS16 can accommodate two such units.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.