Sergey I. Lukyanov, Andrei V. Bandura, Dmitry D. Kuruch, Robert A. Evarestov
{"title":"Force-field modeling of single-chirality-angle multi-walled WS2 nanotubes","authors":"Sergey I. Lukyanov, Andrei V. Bandura, Dmitry D. Kuruch, Robert A. Evarestov","doi":"10.1016/j.physe.2024.116066","DOIUrl":null,"url":null,"abstract":"<div><p>The experimentally observed dependencies of the average interwall distances on the number of walls and diameters of multi-walled WS<sub>2</sub> nanotubes were reproduced in molecular mechanics simulations based on a recently developed force field. A common chiral angle was used for all walls inside each nanotube to ensure its one-dimensional periodicity. The data obtained make it possible to determine the nature of changes in the diameters of single-wall components inside the nanotube and variations in the distances between the walls in its inner, middle and outer parts. The stability of multi-walled nanotubes with respect to WS<sub>2</sub> nanolayers and free single-wall components was evaluated.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116066"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138694772400170X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The experimentally observed dependencies of the average interwall distances on the number of walls and diameters of multi-walled WS2 nanotubes were reproduced in molecular mechanics simulations based on a recently developed force field. A common chiral angle was used for all walls inside each nanotube to ensure its one-dimensional periodicity. The data obtained make it possible to determine the nature of changes in the diameters of single-wall components inside the nanotube and variations in the distances between the walls in its inner, middle and outer parts. The stability of multi-walled nanotubes with respect to WS2 nanolayers and free single-wall components was evaluated.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures