High-sensitivity graphene-gold metasurface optical biosensor for early melanoma detection optimized with machine learning using a one-dimensional convolutional neural network and binary encoding
Jacob Wekalao , Ahmed Mehaney , Nassir Saad Alarifi , Mostafa R. Abukhadra , Hussein A. Elsayed
{"title":"High-sensitivity graphene-gold metasurface optical biosensor for early melanoma detection optimized with machine learning using a one-dimensional convolutional neural network and binary encoding","authors":"Jacob Wekalao , Ahmed Mehaney , Nassir Saad Alarifi , Mostafa R. Abukhadra , Hussein A. Elsayed","doi":"10.1016/j.physe.2025.116214","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents an advanced terahertz metasurface sensor incorporating graphene and gold elements in a W-shaped resonator configuration for non-invasive melanoma detection. The sensor design, optimized through COMSOL Multiphysics simulations, operates by detecting minute variations in the refractive index of skin tissue that occur during early melanoma development. The optimized sensor achieves a sensitivity of 450 GHzRIU<sup>−1</sup> with a narrow spectral linewidth of 35 GHz in the terahertz regime. A one-dimensional convolutional neural network (1D-CNN) algorithm enhances the sensor's predictive capabilities, achieving R<sup>2</sup> values exceeding 0.95 across various operational parameters. The sensor demonstrates dual functionality through binary information encoding capability via chemical potential modulation. The proposed design shows significant advantages over conventional diagnostic methods, offering rapid, non-invasive detection with high accuracy. Moreover, our numerical findings reveals that the designed sensor provides some robustness performance against various geometric parameters and incident angles, which in turns make it promising for practical melanoma diagnosis applications.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"170 ","pages":"Article 116214"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725000396","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This research presents an advanced terahertz metasurface sensor incorporating graphene and gold elements in a W-shaped resonator configuration for non-invasive melanoma detection. The sensor design, optimized through COMSOL Multiphysics simulations, operates by detecting minute variations in the refractive index of skin tissue that occur during early melanoma development. The optimized sensor achieves a sensitivity of 450 GHzRIU−1 with a narrow spectral linewidth of 35 GHz in the terahertz regime. A one-dimensional convolutional neural network (1D-CNN) algorithm enhances the sensor's predictive capabilities, achieving R2 values exceeding 0.95 across various operational parameters. The sensor demonstrates dual functionality through binary information encoding capability via chemical potential modulation. The proposed design shows significant advantages over conventional diagnostic methods, offering rapid, non-invasive detection with high accuracy. Moreover, our numerical findings reveals that the designed sensor provides some robustness performance against various geometric parameters and incident angles, which in turns make it promising for practical melanoma diagnosis applications.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures