Vittorio A. Gensini, Walker S. Ashley, Allison C. Michaelis, Alex M. Haberlie, Jillian Goodin, Brendan C. Wallace
{"title":"Hailstone size dichotomy in a warming climate","authors":"Vittorio A. Gensini, Walker S. Ashley, Allison C. Michaelis, Alex M. Haberlie, Jillian Goodin, Brendan C. Wallace","doi":"10.1038/s41612-024-00728-9","DOIUrl":null,"url":null,"abstract":"Hailstorms are analyzed across the United States using explicit hailstone size calculations from convection-permitting regional climate simulations for historical, mid-century, and end of twenty-first-century epochs. Near-surface hailstones <4 cm are found to decrease in frequency by an average of 25%, whereas the largest stones are found to increase by 15–75% depending on the greenhouse gas emissions pathway. Decreases in the frequency of near-surface severe hail days are expected across the U.S. High Plains, with 2–4 fewer days projected—primarily in summer. Column-maximum severe hail days are projected to increase robustly in most locations outside of the southern Plains, a distribution that closely mimics projections of thunderstorm days. Primary mechanisms for the changes in hailstone size are linked to future environments supportive of greater instability opposed by thicker melting layers. This results in a future hailstone size dichotomy, whereby stronger updrafts promote more of the largest hailstones, but significant decreases occur for a majority of smaller diameters due to increased melting.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-10"},"PeriodicalIF":8.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00728-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00728-9","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hailstorms are analyzed across the United States using explicit hailstone size calculations from convection-permitting regional climate simulations for historical, mid-century, and end of twenty-first-century epochs. Near-surface hailstones <4 cm are found to decrease in frequency by an average of 25%, whereas the largest stones are found to increase by 15–75% depending on the greenhouse gas emissions pathway. Decreases in the frequency of near-surface severe hail days are expected across the U.S. High Plains, with 2–4 fewer days projected—primarily in summer. Column-maximum severe hail days are projected to increase robustly in most locations outside of the southern Plains, a distribution that closely mimics projections of thunderstorm days. Primary mechanisms for the changes in hailstone size are linked to future environments supportive of greater instability opposed by thicker melting layers. This results in a future hailstone size dichotomy, whereby stronger updrafts promote more of the largest hailstones, but significant decreases occur for a majority of smaller diameters due to increased melting.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.