A strategy to predict the current conduction mechanisms into Al/PVP:Gr-BaTiO3/p-Si Schottky structure using Artificial Neural Network

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2024-08-20 DOI:10.1016/j.micrna.2024.207957
{"title":"A strategy to predict the current conduction mechanisms into Al/PVP:Gr-BaTiO3/p-Si Schottky structure using Artificial Neural Network","authors":"","doi":"10.1016/j.micrna.2024.207957","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, Artificial Neural Network (ANN) algorithm is used to predict the current conduction mechanisms into the metal-semiconductor (MS) and metal-nanocomposite-semiconductor (MPS) structures along with their primary electronic parameters, such as the leak current (I<sub>0</sub>), potential barrier height (Φ<sub>B0</sub>), ideality factor (n), series/shunt resistance (R<sub>s</sub>/R<sub>sh</sub>), rectifying ratio (RR), and interface states density (N<sub>ss</sub>) by analyzing the I–V characteristics. The polyvinylpyrrolidone (PVP), barium titanate (BaTiO<sub>3</sub>) and graphene (Gr) nanoparticles are mixed together to create the interfacial nanocomposite layer. Training data for ANN algorithm is gathered using the thermionic emission hypothesis. In order to study the efficacy of the ANN model, the predictive power of the ANN technique for predicting the current conduction mechanisms and electronic properties of SDs has been assessed by comparing the predicted and experimental results. The ANN predictions of the current conduction mechanisms at the forward/reverse bias and the fundamental electronic specifications of the MS and MPS structures are a high level of agreement with the experimental results. Furthermore, the results show that the RR and R<sub>sh</sub> rise whereas the n, R<sub>s</sub>, and N<sub>ss</sub> for MS structure decrease when the PVP:Gr-BaTiO<sub>3</sub> nanocomposite interlayer is employed.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324002061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, Artificial Neural Network (ANN) algorithm is used to predict the current conduction mechanisms into the metal-semiconductor (MS) and metal-nanocomposite-semiconductor (MPS) structures along with their primary electronic parameters, such as the leak current (I0), potential barrier height (ΦB0), ideality factor (n), series/shunt resistance (Rs/Rsh), rectifying ratio (RR), and interface states density (Nss) by analyzing the I–V characteristics. The polyvinylpyrrolidone (PVP), barium titanate (BaTiO3) and graphene (Gr) nanoparticles are mixed together to create the interfacial nanocomposite layer. Training data for ANN algorithm is gathered using the thermionic emission hypothesis. In order to study the efficacy of the ANN model, the predictive power of the ANN technique for predicting the current conduction mechanisms and electronic properties of SDs has been assessed by comparing the predicted and experimental results. The ANN predictions of the current conduction mechanisms at the forward/reverse bias and the fundamental electronic specifications of the MS and MPS structures are a high level of agreement with the experimental results. Furthermore, the results show that the RR and Rsh rise whereas the n, Rs, and Nss for MS structure decrease when the PVP:Gr-BaTiO3 nanocomposite interlayer is employed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工神经网络预测 Al/PVP:Gr-BaTiO3/p-Si 肖特基结构电流传导机制的策略
本研究采用人工神经网络 (ANN) 算法,通过分析 I-V 特性来预测金属-半导体 (MS) 和金属-纳米复合材料-半导体 (MPS) 结构的电流传导机制及其主要电子参数,如泄漏电流 (I0)、势垒高度 (ΦB0)、意整系数 (n)、串联/并联电阻 (Rs/Rsh)、整流比 (RR) 和界面态密度 (Nss)。聚乙烯吡咯烷酮(PVP)、钛酸钡(BaTiO3)和石墨烯(Gr)纳米颗粒混合在一起,形成了界面纳米复合层。利用热释电假说为 ANN 算法收集训练数据。为了研究 ANN 模型的功效,通过比较预测结果和实验结果,评估了 ANN 技术对 SDs 电流传导机制和电子特性的预测能力。ANN 对正向/反向偏压下的电流传导机制以及 MS 和 MPS 结构的基本电子特性的预测与实验结果高度一致。此外,结果表明,当采用 PVP:Gr-BaTiO3 纳米复合材料夹层时,MS 结构的 RR 和 Rsh 上升,而 n、Rs 和 Nss 下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Optical Interconnects for nano-scale VLSI applications Enhancing TFET performance through gate length optimization and doping control in phosphorene nanoribbons A novel nanoscale FD-SOI MOSFET with energy barrier and heat-sink engineering for enhanced electric field uniformity First principles study of the electronic structure and Li-ion diffusion properties of co-doped LIFex-1MxPyNy-1O4 (M=Co/Mn, NS/Si) Li-ion battery cathode materials Metamaterial structure design based on genetic algorithm and phase change material GST for multispectral camouflage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1