Enhancing energy access in rural areas: Intelligent microgrid management for universal telecommunications and electricity

Kanlou Zandjina Dadjiogou , Ayité Sénah Akoda Ajavon , Yao Bokovi
{"title":"Enhancing energy access in rural areas: Intelligent microgrid management for universal telecommunications and electricity","authors":"Kanlou Zandjina Dadjiogou ,&nbsp;Ayité Sénah Akoda Ajavon ,&nbsp;Yao Bokovi","doi":"10.1016/j.cles.2024.100136","DOIUrl":null,"url":null,"abstract":"<div><p>In rural areas lacking an electricity grid, cell phone operators use generators to power their facilities. At the same time, however, the local population is finding it difficult to use the cell phones and other electronic devices for which these operators are deploying their efforts. This situation, due to the problem of access to energy, hinders universal access to telecommunications. The present study aims to solve this problem using microgrid techniques. A microgrid consisting of photovoltaic panels, a genset and storage batteries has been designed to meet the needs of cell phone operators' sites in Bapure, a rural locality in Togo. The focus is on managing energy flows between the various sources of the microgrid, and between the needs of the cell phone operators' site and those of the local population. To resolve the lack of solar irradiation data at Bapure, hourly solar irradiation was predicted using the Adaptive Neuro Fuzzy Inference System (ANFIS) algorithm to obtain a realistic result. Optimization studies were then carried out using the Particle Swarm Optimization (PSO) algorithm to determine the optimum system configuration to ensure continuity of service at the operator's site. The simulation results show that the proposed system has a surplus of energy production at all times, which can be used to supply electricity to the population at a cost equal to 0.0185 USD, with a solar energy utilization rate of 98,95 % and a generator that only needs to operate at 0.15 % throughout the year. The results obtained indicate that a renewable energy system can provide a more efficient solution for electrifying the rural mobile operator's sites and the local population, and can improve the quality of service for the telecommunications industries.</p></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277278312400030X/pdfft?md5=ae5f5c5d0670b19a102b4e6150630ef8&pid=1-s2.0-S277278312400030X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277278312400030X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In rural areas lacking an electricity grid, cell phone operators use generators to power their facilities. At the same time, however, the local population is finding it difficult to use the cell phones and other electronic devices for which these operators are deploying their efforts. This situation, due to the problem of access to energy, hinders universal access to telecommunications. The present study aims to solve this problem using microgrid techniques. A microgrid consisting of photovoltaic panels, a genset and storage batteries has been designed to meet the needs of cell phone operators' sites in Bapure, a rural locality in Togo. The focus is on managing energy flows between the various sources of the microgrid, and between the needs of the cell phone operators' site and those of the local population. To resolve the lack of solar irradiation data at Bapure, hourly solar irradiation was predicted using the Adaptive Neuro Fuzzy Inference System (ANFIS) algorithm to obtain a realistic result. Optimization studies were then carried out using the Particle Swarm Optimization (PSO) algorithm to determine the optimum system configuration to ensure continuity of service at the operator's site. The simulation results show that the proposed system has a surplus of energy production at all times, which can be used to supply electricity to the population at a cost equal to 0.0185 USD, with a solar energy utilization rate of 98,95 % and a generator that only needs to operate at 0.15 % throughout the year. The results obtained indicate that a renewable energy system can provide a more efficient solution for electrifying the rural mobile operator's sites and the local population, and can improve the quality of service for the telecommunications industries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加强农村地区的能源供应:普及电信和电力的智能微电网管理
在缺乏电网的农村地区,手机运营商使用发电机为其设施供电。但与此同时,当地居民却很难使用这些运营商所使用的手机和其他电子设备。由于能源问题,这种情况阻碍了电信的普及。本研究旨在利用微电网技术解决这一问题。为满足多哥农村地区 Bapure 手机运营商站点的需求,设计了一个由光伏电池板、发电机组和蓄电池组成的微电网。重点是管理微电网各种能源之间的能量流,以及手机运营商站点和当地居民需求之间的能量流。为了解决 Bapure 缺乏太阳辐照数据的问题,使用自适应神经模糊推理系统 (ANFIS) 算法对每小时的太阳辐照进行了预测,以获得符合实际的结果。然后使用粒子群优化(PSO)算法进行优化研究,以确定最佳系统配置,确保运营商现场服务的连续性。模拟结果表明,建议的系统在任何时候都有能源生产过剩,可用于向居民供电,成本为 0.0185 美元,太阳能利用率为 98.95%,发电机全年只需运行 0.15%。研究结果表明,可再生能源系统可以为农村移动运营商站点和当地居民的电气化提供更有效的解决方案,并能提高电信行业的服务质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Simulation of a system to simultaneously recover CO2 and sweet carbon-neutral natural gas from wet natural gas: A delve into process inputs and units performances Optimizing a hybrid wind-solar-biomass system with battery and hydrogen storage using generic algorithm-particle swarm optimization for performance assessment Design and implementation of a control system for multifunctional applications of a Battery Energy Storage System (BESS) in a power system network Optimizing textile dyeing and finishing for improved energy efficiency and sustainability in fleece knitted fabrics Techno economic study of floating solar photovoltaic project in Indonesia using RETscreen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1