Miraduzzaman Chowdhury , Mohammad Shohag Babu , Shahadat Hossain , Rony Mia , Shekh Md. Mamun Kabir
{"title":"Optimizing textile dyeing and finishing for improved energy efficiency and sustainability in fleece knitted fabrics","authors":"Miraduzzaman Chowdhury , Mohammad Shohag Babu , Shahadat Hossain , Rony Mia , Shekh Md. Mamun Kabir","doi":"10.1016/j.cles.2024.100154","DOIUrl":null,"url":null,"abstract":"<div><div>In the industrial range, optimizing dyeing and finishing energy is important to control environmental pollution. In the Dyeing stage to finishing of textiles gas, electricity, steam, and water are used 260 m<sup>3</sup>/hour, 591 kWh, 1.2 pounds/hour, and 8.69 tons/hour respectively. If textile professionals do not match the desired shade and quality of fabrics with the use of minimal resources the energy cost will be multiple times higher. This study investigates the change in the shade of fleece knitted fabrics from the dyeing unload to the finish stage and assumes a dyeing recipe adjustment, focusing on the impact of optimized dyeing and finishing processes. Also, it focuses on qualitative changes in properties across various color variations. Identical dyeing recipes for light, medium, and dark shades of red, blue, and navy. Properties such as GSM (grams per square meter), width, color strength, shade (darker/lighter, red/green, blue/yellow), shrinkage, spirality, pilling, bursting strength, and color fastness were analyzed. Dyeing to post-finishing, an increase in color strength (K/S) values was observed, with examples including minimum increases from 2.9 to 3.18 for light red and maximum from 19.3 to 22.9 for dark navy shade. Darker shades (DL*) were observed after stenter 1st pass (among all variants, red: 1.2 % to 8.1 %, blue: 4.5 % to 6.7 %, navy: 1.6 % to 2 %), while lighter shades (DL*) were observed following sueding and napping (among all variants, red: 3.1 % to 19.7 %, blue: 11.8 % to 19.7 %, navy: 14.8 % to 27.6 %). Greenish (Da*) and yellowish (Db*) tones are prominent across all colors in the finishing stages. Besides, other properties shrinkage, spirality, pilling, bursting strength, and color fastness significantly changed. These findings offer valuable guidance for dyeing professionals aiming to achieve the desired adjustment of shades that match the quality standard and produce sustainable fleece fabrics. To compensate for the shade lightening that occurs during the finishing process, it is recommended to keep the fabric shade slightly darker (5.70 % to 23.10 %) at the dyeing stage.</div></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783124000487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the industrial range, optimizing dyeing and finishing energy is important to control environmental pollution. In the Dyeing stage to finishing of textiles gas, electricity, steam, and water are used 260 m3/hour, 591 kWh, 1.2 pounds/hour, and 8.69 tons/hour respectively. If textile professionals do not match the desired shade and quality of fabrics with the use of minimal resources the energy cost will be multiple times higher. This study investigates the change in the shade of fleece knitted fabrics from the dyeing unload to the finish stage and assumes a dyeing recipe adjustment, focusing on the impact of optimized dyeing and finishing processes. Also, it focuses on qualitative changes in properties across various color variations. Identical dyeing recipes for light, medium, and dark shades of red, blue, and navy. Properties such as GSM (grams per square meter), width, color strength, shade (darker/lighter, red/green, blue/yellow), shrinkage, spirality, pilling, bursting strength, and color fastness were analyzed. Dyeing to post-finishing, an increase in color strength (K/S) values was observed, with examples including minimum increases from 2.9 to 3.18 for light red and maximum from 19.3 to 22.9 for dark navy shade. Darker shades (DL*) were observed after stenter 1st pass (among all variants, red: 1.2 % to 8.1 %, blue: 4.5 % to 6.7 %, navy: 1.6 % to 2 %), while lighter shades (DL*) were observed following sueding and napping (among all variants, red: 3.1 % to 19.7 %, blue: 11.8 % to 19.7 %, navy: 14.8 % to 27.6 %). Greenish (Da*) and yellowish (Db*) tones are prominent across all colors in the finishing stages. Besides, other properties shrinkage, spirality, pilling, bursting strength, and color fastness significantly changed. These findings offer valuable guidance for dyeing professionals aiming to achieve the desired adjustment of shades that match the quality standard and produce sustainable fleece fabrics. To compensate for the shade lightening that occurs during the finishing process, it is recommended to keep the fabric shade slightly darker (5.70 % to 23.10 %) at the dyeing stage.