Zichao Wang , Kui Wen , Ruixue Ding , Shubin Liu , Zhangming Zhu
{"title":"A chopper instrumentation amplifier with discrete-time compensation based on current generation unit to eliminate electrode DC offset","authors":"Zichao Wang , Kui Wen , Ruixue Ding , Shubin Liu , Zhangming Zhu","doi":"10.1016/j.mejo.2024.106375","DOIUrl":null,"url":null,"abstract":"<div><p>A capacitively-coupled chopper instrumentation amplifier (CCIA) for bio-potential signals acquisition is proposed in this paper. A novel discrete-time compensation scheme based on the current generation unit is adopted to suppress the DC offset caused by the sampling electrode. Different with the traditional analog DC servo loop (DSL) used in previous works, the circuit based on this scheme is more straightforward and consumes less power. Moreover, it can suppress a larger electrode DC offset in a short time. This work is designed in a standard 180 nm CMOS process. The CCIA operates from a 1.8 V supply, from which it draws a total current of 0.72 <span><math><mi>μ</mi></math></span>A. The simulation result shows that the signal bandwidth of the proposed CCIA is 1.2 – 500 Hz and the mid-band gain is about 31.49 dB. In the frequency band of 1 – 500 Hz, the input-referred noise of the circuit is 2.01 <span><math><mrow><mi>μ</mi><msub><mrow><mi>V</mi></mrow><mrow><mi>r</mi><mi>m</mi><mi>s</mi></mrow></msub></mrow></math></span>. Inputting a single-tone sine wave with an amplitude of 14.1 mV at the frequency of 56.152 Hz, the total harmonic distortion (THD) of the CCIA’s output is −51.38 dB. This circuit can suppress a large electrode DC offset within a few milliseconds, and the maximum electrode DC offset that can be tolerated up to 130 mV.</p></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239124000791","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A capacitively-coupled chopper instrumentation amplifier (CCIA) for bio-potential signals acquisition is proposed in this paper. A novel discrete-time compensation scheme based on the current generation unit is adopted to suppress the DC offset caused by the sampling electrode. Different with the traditional analog DC servo loop (DSL) used in previous works, the circuit based on this scheme is more straightforward and consumes less power. Moreover, it can suppress a larger electrode DC offset in a short time. This work is designed in a standard 180 nm CMOS process. The CCIA operates from a 1.8 V supply, from which it draws a total current of 0.72 A. The simulation result shows that the signal bandwidth of the proposed CCIA is 1.2 – 500 Hz and the mid-band gain is about 31.49 dB. In the frequency band of 1 – 500 Hz, the input-referred noise of the circuit is 2.01 . Inputting a single-tone sine wave with an amplitude of 14.1 mV at the frequency of 56.152 Hz, the total harmonic distortion (THD) of the CCIA’s output is −51.38 dB. This circuit can suppress a large electrode DC offset within a few milliseconds, and the maximum electrode DC offset that can be tolerated up to 130 mV.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.